sEEd @R n.
.EEE-::--- ::::

T LT

B
TIEEELEL

BT Y.

eSCAPE systems, techniques and

Infrastructures
Document 1D eSCAPE -D5.1
Status Final
Type Deliverable
Version 10
Date September 1999
Editors Steve Pettifer
Task 51

© The eSCAPE Project, Esprit Long Term Research Project 25377
Project coordinator:

Tom Rodden

Computing Department
University of Lancaster
Lancaster LA14YR

United Kingdom

Phone: (+44) 524 593 823
Fax: (+44) 524 593 608
Email: tom@comp.lancs.ac.uk

The eSCAPE project comprises the following institutions:

Swedish Institute for Computer Science (SICS), Stockholm, Sweden
University of Lancaster, Lancaster, United Kingdom (Coordinating Partner)
University of Manchester, Manchester, United Kingdom

ZKM, Germany

Editors of thisreport:

Steve Pettifer, Manchester University

ISBN 186220 081 5
Lancaster University, 1999
Thisreport is available from http://escape.lancs.ac.uk/.

Table of contents

CHAPTER 1. INTRODUCTION AND OVERVIEWccooieeeieeceee e 1
DELIVERABLE STRUCTUREcotstrtreriresteiesisessesesessssesesessesesessesssesesssssssssssssensssssessssssssssensssssssenssensessaes 1
Section 1: The technology Of the ArtWOIKS.........cvririnee s 1
Section 2: The technology of the abstract electronic landscape..........ccocvverererreecneeniceneenen: 2
Section 3: The technology of the physical electronic landscape...........coovrerereeeneeneenerneeneens 2
SECTION ONE: THE TECHNOLOGY OF THE ARTWORKS..........cceevuveeee 3
CHAPTER 2: CONTRIBUTING TECHNOLOGIES.........ccoooviiieiiieciieenieens 5
10-DENCIES | SAO PAULO
EAItOr’ S TOOIKIT ETK ..o s s s sesseseeseeses s ses s ssssssessensessessessessessssssssssessessensessessessennes
SElF-OF QANISALION ...ttt 7
VISUBL CHEBNT....cevieiiecieieet st 8
KEYWOI T BIOWSEY ...ttt 8
DAtADASE BIOWSEYcueueueereereeeeseesessessessesessesssasse et ses s s sssssesss s essessesssssssnssnssssnees 11
SOUNA SYSLEIML......oueeececiecte ettt ettt b s a bbb bbb s s st en s st s s nns 12
FORCE FEEDBACK INTERFACEcootitrtrrieeneres ettt ettt sas e s s 14
Overview Of the aChIBVEMENLS: ..o 19
THE DISTRIBUTED LEGIBLE CITY ..ottt sesesesesesesesssesesesssesssssssssessssssssssssssnens 20
DESIGN CHANGES........ctreureereet ettt et 20
THE TMPLEMENTALION. ..ot 21
The Presentations at the ZKM @nd I ST.........ccoreeeeseessesessesessesessesssesessssessseens 25
Evaluation and COmMPAriSON ... e se s sss et ss st sss s s ssssssssens 26
POSSIDI€ NEW DEVEIOPIMENLS......coececieecceeteicrie st ettt n s natns 27
NUZZLE AFAR. .ottt ettt bbb et et b e bbb e be e e b et e b e s s 28
THE INEErPIELIVE PIrOCESS.......ceieiieeeiresesietsisessssssesesssssssesss e ssssssssssssssessssssssessssssssssessssssssssssnssnsass 28
Intellectual ACtiVity and EXPEITENCE.ccvvvrecerrerreerreeee st ssssssssesssssssessssses 29
The Modeling of COMMUNICALION. ..o 30
CONEENE AN FOMMN ..o 35

Future Possibilities out of Problems: The Limitations of the Exhibition Space and towards

AN INEEINEE VI SION...... ettt sttt ettt ettt 37
PLACE - A USER'SIMANUAL...cirittettrer ettt ettt st ettt 37
OVEIVIBW....cectetee ettt bbb bbb bbb bbbttt 37
GraphiCS RENUEI ING ...vvureeeeiieierieesisssiseressssts e sssssesssssssssssessssse s sesssssessessssssssssssssessssssssessssssesesssnssns 38
THE WEB PLANETARIUM IN THE EVEDOME.....coiiirtnerenneereseseeseseseesese s 40
TECNNICAl DESCIIPLION ...ttt bbb 41

September 1999 i

The WED Plan@tariUML.........ccocrereeeeeeeeeeeeere s sesseseses e ses s eessssessessessessessessesssssssees 43
A Mix Of FUNCLION AN EXPEFIENCE......c. vttt 45
Navigating the LANASCAPE.........cvcrerrieeeriresi s ses s st sssesss s

Merging two user interface metaphors.

Support for the EVE imMage WarPiNGccccruecerneneeeresesieessesse e ssssssssssssssssessssssssessssssssesssssns

SECTION TWO: THE TECHNOLOGY OF THE ABSTRACT ELECTRONIC
LANDSCAPE ...t 49

CHAPTER 3: Q-PIT AND DATACLOUDS: THE GENERATIVE

ALGORITHIMS ..ottt e e sabe e e e e sanaee e s eennaeeeens 51
GENERATING THE Q-SPACE ... cereeteeerirestee s st seesessssessestessesessssesessssssensssssensnsssnssssnsnsssenens 51
BENEDIKTINE STARTING POINT ...ootetiotririeresireseereseseseesesesesesessssesssssssssssssssesssessessnsssssessssssssseses 51
SIMILARITY IMATRIX ettt ssesesesseseses e sessesssesessssessestesssssssssssssssssssensssssensnsssssessssssesanens 52

User-Specified WEIGNEINGS. ..ottt bbb 53
MINIMAL SPANNING TREE......ccistetitririetsisisisisssssesisssssssssssssesses 4
REGIONS WITHIN THE TREE.......ccctitiitiririeeenisiee sttt sss e s ssse e sessssssenenes 55
FORCE DIRECTED PLACEM ENT ..ottt se s see e sss s 56
CONCLUSIONS......cuctiteieieieteisie ittt bbbt bbb bbbt bbbt bbbtk bbbk bbb bbb bbbttt b et bbb enes 57

CHAPTER 4: THE JAVA-DIVE INTERFACE.........cccooiiiiiiiince, 63
THE DClooouuttireresesssssssssssisssssssssssssssssssassss s ssssssssssssssss s sssssssssssssasssss s sssssssssssssssssssssssssssssssssssnnnas 63
ADDING JAVA SUPPORT FOR THE DCl.......cocouuuummmmmserirssssesssnanas 63
MESSAGE AND ERROR HANDLINGccoouuumimnrinsessssssssssssssssesssess 65
EXECUTING A COMMAND THROUGH THE JDl......coouuimnrinnssesssssmsssssssssssssssssssssssssssssssssssess 66
CONSTRUCTING PROXY OBJIECTS....ooumrmrssessissssmissnanns

JDI LIMITATIONS.............

FROM JDI TO AJVE

THE IMPLEMENTATION OF JIVEctiieeiririeieesesesesesessessesssssssessesssesssssssssssssessnssessesssssssssssnsssnses
Choosing an implementation SEFatEgY ... 68
Jive and the distributed database Of DIVE ... 69
The DiveNative Java PACKAGEcccvvcucieirieceirecete et sss s ssssens 71

FIRST EXPERIENCES OF USE.......ccoiitiieittririeeenisieieseses e sss e ss s ses b sssesesssssssseneses 72

OUTSTANDING ISSUES.......cetiiririeisirisieisis sttt sttt bbb bbb bbb bbbttt bbbttt betes 73

ii eSCAPE Deliverable 5.1

Incorporation Of DIVE API MOQUIES ...t ssssesesssssssesssnenes 73
EXTENDING THE DIVENATIVE PACKAGE STRUCTUREccoiveerreeetereeete et snenens 73
The method iNterface MOAUIE ..ot nseees

The Tcl/Tk behaviour module

Error reporting ... sssssssesessssssesessens
DIVE configuration iINTEITACE........cccerecee sttt ns
(@ o1 o101 0= = T o TR 75
BRINGING DIVETO THE JAVA WORLD ..ottt es 75
A JAVA3D RENETEYooceiieeieeieteiet et eb bbbt 76
PO TADITTTY ..t 76
EXEENAADITTTTY ...t 76
Access to wide Set Of t00IS AN APIS........orreeereesie et sasees 76
A NOC CVES USING JiNi ouvveiiiicieisecicte et ssss et se st ss s s s s ts s st ssassesesssssssanas 77
[NEErACtION = PrESENEALION.......ceciieireieereieecireee e reas bbbt 77
Visualisation and PreSENtAtioN ... st s s sessssens 77
Avatar control devices, e.g. 3D mice, joysticks and trackers........ccovvevevveresnnessessensenens 78
Personal artefacts - information CONLAINENS............cveuriueireerreeseree et seaees 78
A complete Java reWrite Of DIVE ...t ses e 78

SECTION THREE: THE TECHNOLOGY OF THE PHYSICAL
ELECTRONIC LANDSCARPE ..ot 79

CHAPTER 5: GENERATING VIRTUAL CITIESWITH AN
ALGORITHMIC APPROXIMATION

INTRODUCTION.....ocoitiiiieriiiereiire s sessnenenes

URBAN PLANNING THEORIES........cccctirrieineririeeneresie e
BaSIC CONCEPLS.....cveeeeirereeeirireresisisessssesesesssssesesss e ssssssssessss s sesssssessessssssesesssssessesssnsessssnssssssenssnsess
22 ES ol = 1= 1T 83
Central PlACE TREOTY.......coirerirecireicet et 83
Spatial INteration MOEIS..........ocieee s 83
TOWARDS A NEW ALGORITHM ...ttt s st ssssseses e e sessssssssessssassssssssensssnses &
THE IDEAL ALGORITHM ..ottt ettt et nnas &4
THE CURRENT IMPLEMENTATIONcotitntnttrtriniseneneseseesesesesesesesesesesssesessssssesesssessssssssssssssssssssssnens 86
Drawing the SEFEELSvice ettt nanten 86
INErOAUCING the SLFEELS ...ttt s 87
SMPLITYING the Graph ..o 89
ODBtaIiNING thE DISLIICES. ...ttt 90
THE DRAWSTREETS PROGRAM ..ottt isessese e tesesesssssse et sssesssessesssessssssssessssasensssssensssnses A
Filling the City WIth ODJECES.......ccceeccerecc sttt atns 95

September 1999 iii

The Representation Of the City ... sessssees 96

GENEratiNg the SEFEELS.......co ittt bbb 96
S0Iving the HEeight Problem...........ccccre e 98
THE VIRTUAL CITY BUILDER (VCB)....oootuttetririeieineresisisesesis s esessasssesesssasssesss st sssssssssssssssssasens 100
Joining the VCB With the DIStIICES......ccciiiceeece ettt naes 102
THE MAKECITY PROGRAM ..ottt ettt sttt st nsenan 104
DISCUSSIONSottt ettt et bbb e e b et s e b e ae s e b b e s e e s e e b e et bebe e se b e be e s neenan 105
THE VIEWER ...ttt ettt sttt et b et b bt se b et b bt b s e e s e enan 105
Architecture and Implementation Of the VIEWEN ... 106
DISCUSSIONS......vieenreeirerisesesesesssesesesssses e sessssssesessasssesesssssessesessssssesssssessesssssnssssesssssnssssssssssenssnsasns 110
100720 =SSO 111
FULUN @ WOK K ...ttt bbb bbbttt 113

CHAPTER 6: WAYFINDING IN THE VIRTUAL CITYSCAPE :

PROFESSOR DIJKSTRA GOESWALKABOUT ..o 115
PROBLEM DEFINITION ..cuoititittiririeitrireeeseses et esesss e se e s e s e st s e e s ssesesesssssssnssessessnsnsssnsn 115
Project Goals and REQUITEMENTScccvirrireereseress s ssssssesesss st sesssssesssssssssssssssssssssssssssesns 115
All-pairs Shortest Path ProbI€M...........cerrsecessesssesesee s ssesessssssesessssssssessses 116
DijKStra’ S AIGOFITNML. ...t 117
Floyd-Warshall’s AlGOrithML........coere s 117
Performance and Complexity ANAIYSIS.........cuerrrirmrere s sees 118
The City REPIESENLALION.......ccceeeeceeteeecic ettt bbb be s s b s s naee 119

(@1 3V Y 11970 2= L1 o) o ORI 119
City Graph CONSLIUCTIONccreeiececieirecse st ss e ssse st ss s s ss st snns 120
ReViSioN IMPIEMENTALION........cccevereccie sttt seas 122
VIRTUAL CITY GUIDE L.ttt sttt sttt nsntssssnsnens 124
BaASIC OPEIALIONS......ocvuireeerreetreee sttt 124
Finding the Optimal Path..........c.ooccee s 125
Moving Between TWO Differ€nt POINES ... nees 125
ViSitiNg @ SEMES Of PlACES......c.covcecieecicte ettt ettt naee 127
MOoVING 10 the NEArESt PIACE.......c.occciceecee ettt e 127
Change Of ROULE ...ttt ss st se sttt s st s st s s 130
RESUILS ANA CONCIUSION.....oucuiieirieireeseeriee sttt 130
VIRTUAL CITY GUIDE 2.ttt sttt sttt sttt sttt nsntssssnsnens 133
(@] 1= A Tox Ko 018 K o1 oo 8 Tox 1 o] o 1T 133
ONE-WAY SITEEL AQTITIONouevrieetieet et 134
Finding an Alternative Path ... s 135
RESUITS ANA CONCIUSION.....oucuiieirierireeseseireeereee ettt sa et 136
THE USER INTERFACE ..ottt sttt ettt st sttt se st ntenan 137

iv eSCAPE Deliverable 5.1

The Graphical USer INLEITaCE........ccoviicrrrer ettt sesss e nses 138
SPEECH CONEI O ..o
MPIEMENTALION ..ot
Feedback to the User

CHAPTER 7: CROWD CONTROL: POPULATING THE VIRTUAL

CITYSCAPE ...t e n e sr e nne e 145
INTERACTIVE FRAME RATES ...ttt ettt bbb 146
ON-LINE REFERENCES........ccetitetitiisieisis sttt sttt bbbt bbb bbb bbb bbb bbbt bbb 146
ON SCREEN ...c.tuitriteeeersteeseeseessesssssssesssssssssssssessessssssssssssssesssssssssssssessessessssssssessssssssssastsssessessessessesssans 147
OBJIECTSIN THE CITY eitirieeirereseesesesiessesessssesessssssesssessesssessssssssessesssessssssensssssessssessessssssessssssssesenens 147
PEOPLE MOV EMENT ...oviiirieteeres e sesee s esee st saessssssesesessesenesassesssessssssenssessessnsssnsensssssesssssnsnsen 148

Interacting With the WOF TG ..o s 149
BEHIND THE SCENES......ccooiitiiririeeereris e et seseses e se st se st s e e st besassssssenssesssssssnsssnsan 149
EXEEINAL FIlES..... oottt bbb 149
MEIN DALA SITUCLUIES ..ottt ettt 150
L0 o0 = LT 0 @ o=t £ 151
UPDATING PEOPLE ...ttt 152
MoViNg from gOal t0 GOAIceureereeereeirieire et 153
ATTIVING AL A QO8I ...ttt 153
[T = Tox 1] OO 155
Updating @ PerSOn’ S POSITION......c.ccuicueiriicie sttt as s st bnas 155

FRAME RATES..........
REJECTED IDEAS

BIOCKS Of PEOPIE......eceieecete sttt et e s ettt 158
(0 Tox (T g0 Y o To o 1 g 4 P 159
NAVIGALTON SEYTES ...ttt 159

Line Of Sght ChECKING ...t 159
POSSIBLE IMPROVEMENTS.....ccoitiiiririeeiserieeeses e eesesessesesessssesesessesesessssssesesessessnsssssenssessesssssssnsen 160
Implementati ON IMPrOVEMENLScccoouriieerice ettt s e es s bbb 160
DISETACTIONS. ... veveeeeeeeeseescee et b 160
ON-SCrEEN CRANGEScucvctiiceeieieeie ettt ss st st s et s s st ss st s s s st enssansessnas 161
REFERENCES AND BIBLIOGRAPHY ...t 163

September 1999 v

Chapter 1
| ntroduction and Overview

Steve Pettifer
The Universty of Manchester

This volume serves as a technicd annexe to the first three components of the eSCAPE
Y ear 2 Ddliverables and describes the systems, techniques and infrastructures that have
been developed during this second year of research. Detall that, for the sake of
maintaining a clear narrative describing the two main thematic demondrators, has by
necessity been excluded from ddliverables 4.0, 4.1 and 4.2, is presented here as a
series of technica reports. The document contains mgor pieces from al four research
gtes, being a compilation of work from 20 authors, and representing more broadly
contributions of alarge number of academics, artists and engineers.

Deliverable structure

The reports contained in this volume are presented in three sections. Firg, in Chapter 2
we describe in detail the technology and form of the commissioned artworks that have
been the subject of the sudies in the other ddliverables, and which have informed the
design of the thematic places described in Deiverables 4.1 and 4.2. Second, in
chapters 3 and 4 we present the dgorithms associated with the abstract eectronic
landscape and the modifications made to the DIVE Virtud Redity Sysem to
accommodate this new environment. Findly, Chapters 5 to 7 contain a collection of
techniques associated with the theme of the physical dectronic landscape.

The first section of this report represents what is in the mogt an overview of
completed work. Thus it contains, where gppropriate, reflections of the engineers and
attigs involved in the pieces with possble directions for future work. The techniques
presented in the later two sections represent ongoing work in its various stages.

Section 1: The technology of the Artworks

Alongsde the development of the two thematic places, this second year of the project
has seen the design, implementation and ethnographic study of a number of multi-media
at inddlations. The sudies of these works, and the implications for future desgn
obtained by observing the citizen interacting with these in the public arena have been
described in detall in the companion volumes. the emphasis here is ingead on the
technica challengesfaced in the pieces’ redisation.

The chapter describes:

eSCAPE eSCAPE systems, infrastructures and techniques

10-dencies | Sao-Paulo in which urban designers and the inhabitants of these
urban areas can interact with information describing their environment.

The Force Feedback table, a nove interaction device inspired by the 10-
dencies work, which combines large projected output with consistent haptic
and kinaesthetic feedback.

The Distributed Legible City, an evolution of a previous stand-aone
ingdlation in which members of the public can share a tour around three
esoteric virtud cityscapes usng immersve virtud redity technology.

Nuzzel Afar, an exploration of interconnected spaces and the relationships
between their inhabitants and their avatars.

Place — A user’s manual, in which a landscape is navigated from within a
360 degree panoramic environment.

The Web Planetarium & The Eve Dome, where the initid verson of the
Web Planetarium developed in project Year 1 finds expresson in The
Extended Virtud Environment (EVE).

Section 2: The technology of the abstract electronic
landscape

The abstract eectronic landscape is described a an gpplication level in Ddliverable
4.1. The component technology of the abstract eectronic landscape has focussed on
the devdlopment of agorithms for setting out and visudising the relationships and
interconnections between items of information in the abdract landscape, and for
integrating the software platform with standard internet protocols. Including direct
influences from the artworks, and in paticular the particle-based visudisations of
dynamic data from 10-dencies, the abstract electronic landscape work has developed
automated placement agorithms for arranging the landscape, as wdl as techniques for
highlighting regions containing smilar information. The platform development has
included the integration of the DIVE Virtud Redity platform with Java technology.
Chapter 3 describes the development of the placement and region generation
agorithms, and Chapter 4 includes details of the Java developments.

Section 3: The technology of the physical electronic
landscape

The physicd dectronic landscape is described a an gpplication leve in Deliverable
4.2. The fina three chapters of this volume contain a collection of techniques based
around the theme of the cityscape, and which are suitable for integration into the fina
physical eectronic landscape demonstrator. These include methods for:

Automdticaly generating different styles of city-like environments based on
urban theory

Assgting way-finding within the cityscape, and
Populating avirtud cityscgpe with configurable ‘ lightwelght agents

2 eSCAPE Deliverable 5.1

Section One
The Technology of the artworks

Chapter 2
Contributing Technologies

SICS, ZKM, Lancaster University, The University of Manchester

The second year of the eSCAPE project has seen the commissioning and construction of a
number of multi-media installations and artworks, which in turn have inspired and informed the
two thematic places. In this chapter we collect together descriptions of the various software
systems that drive these installations, and the novel input and output devices developed.

10-dencies | Sao Paulo
Detlev Schwabe, ZKM

The system developed for the 10-dencies|Sao Paulo project is a specidised multi-
media database in the context of urban development with an emphasis on collaborative
work, planning and information retrieval. The system has first been used as a tool for
urban planners, architects, artists and philosophers from Sao Paulo for collecting,
organisng and mantaning nulti-media data about specific urban topics in the city.
Every participant (an editor in the projects terminology) assigns a keyword or short
phrase to each piece of data he wants to store in the database and arranges this
keyword on a two-dimensiond map in away he thinks it relates to other keywords on
the map and in the database.

The editors are able to view other editor's keywords and related content, drag
them on their own keyword map and organise them spatidly in reation to their own
keywords. A centraised database system is used to store the participants data,
keywords and keyword maps. A second component, the self-organisation, takes these
maps and uses them to create a rule set for a sdf-organisation dgorithm. The sdf-
organisation uses these rules to iteratively calculate the motion of each keyword on a
two dimensona area and stores the motion trail on the database. A second
component, the force-field server, takes the actual position of each keyword, assigns a
local force field pattern to each keyword and produces a two-dimensiond globa force
field by accumulating the locd force fidds. This globd force fidd is made available for
retrieval over network to the visud client.

The visud dient is the user’'s front-end for information browsing. It retrieves a
sngpshot of the current globd force field and guides the user by a dynamic flow
visudisation towards clugters of information. Once the user has zoomed in far enough
he is able to sdlect the visble keywords to bring up a standard web browser which
displays the rdated information aong with the hisgory map, a smple visudisaion of the
moation trail of that keyword over time. By clicking on certain time points on that

eSCAPE eSCAPE systems, infrastructures and techniques

tempord trail, the user recdls former keyword congdlations in relation to the one he
has chosen.

Severd technical improvements have been redlised since the firgt inception of the
work. In particular, the visua client component has obtained the most changes. Besides
the implementation of a dynamic cloud visudisation of the force fields, an interactive,
real-time synthesis sound system, based on a physical modelling approach, has been
added to the client. Figure 1 is a sketch of the system components. The components
indde the box are usudly running on one machine for best performance. The arrows
show the flow of data between components

|O-dencies | Sao Paulo

Overview

Editors @

Self-
organization

Force Field
Server

$———3|(Database)=——

15

X Sound l
Visual Client System

DB Keyword

Browser Browser,

Furthermore, due to insoluble problems using the POSTGRES database system
(http://postgresql .nextpath.com) , the decison was made to switch over to the mySQL
(http://mysgl.he.net) database system.

Figure 1: A sketch of the system components.

Editor’'s Toolkit ETk

The ETK is the editor's main front-end to the database and the keyword maps. It is
redised as a JAVA application which utilises the JAVA/Swing AP for building the
grephica user interface and the MM JDBC driver for interfacing with the mySQL
database. The program enables the user to upload her documents, assign keywords
and annotations to them and drag keywords from a list onto her keyword map. For
faster access and viewing of documents in the database, a caching mechanism is
integrated which uses the local disk to cache dl documents which have been retrieved

6 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

over network. The currently supported content types for documents are text (ASCII),
image (JPEG, GIF), audio (AIFF, WAYV) and video (Quicktime, AVI). The mime-
typeis determined automatically and stored in the database along with the document.

Figure 2 shows a screenshot of the main screen of ETk dong with a pop-up
window of the document viewer/keyword editor. The biggest area is occupied by the
keyword map. The column to the right of it houses a list of al keywords which are
currently in the database. Keywords are shown in blue if they were created by the
editor himsdf and in red if they have been created by a different editor. A keyword is
highlighted in grey if it is dready on the keyword map. Located underneath the map is
the document browser which shows al documents which have been put into the
database by the editor. Each document is represented by it's name and an icon,
showing it's content type. Right of this is a text window which displays the public
annotation to the currently sdlected keyword. At the bottom of the window is a status
line consgting of a one-line message field and a progress bar that usudly shows the
date of transfers to and from the database server.

! |io ennotetian

-] 1] L]
. ey sy g B

miele e cdade Imdsesewid FamidaSik tamila st Tamil san

= | I
o

|

Figure 2: A screenshot of the final version of the Editor’s Toolkit, ETK.

Self-Organisation

One addition to the sdf-organisation component is a JAVA/Swing-based visudisation
of the current spatial state of the keywords for control and demonstration purposes.

September 1999 7

eSCAPE

eSCAPE systems, infrastructures and techniques

The st of parameters for the dgorithm can be edited in a didog-box and tested
immediately. Figure 3 is a snapshot of the status of the sdlf-organisation. The process
can be started with agraphica user interface as shown or as a background task.

File SO Engine Utilities Options

expectativa de vida

desernprego mefegido
JGrupo Santa Heleha pred J@U
desperdicio espacl

Plano de Avenidas i

DI Wéﬁw sFnsesu
Suburbio aemvﬁawtsncm passagem

'LAPA ENTREGA Gﬁ@%@ﬂﬁ!&“‘""" ® Passadm

eeeeeeeee

Status

o I ipdating soobjs

Self ization Vi
v de L o Ty IS e AGaganage i,
2 prisao provisoria <

Sao Paulo Cubista

contra SP Migracoes demanda por conheci

circo no museu
Trgheusismenieiefainaidade Tecnologic
Ly 5 tempo. aﬂm hbemade Absoluta de Expressap
_Humano de Rua * fephas Urbanidades 1
Guelg & cida8iien Espaco margiif 0P ESiPafife Urbanidedes -
ggia e e g VBT o

uFutum do lixo
& rmq%vgégyﬂg?ﬁde :m%lef ial +

Organismo

esluasdRe dlal
Prestes M@EP " B m“fo W‘mma‘@ﬂd
GALPOES ALUGAM_SE ME/W% §u\tr|gag i

@aﬁﬁﬁgmaéma\ mesmo

Convento Ig

5718 @
materig </ 3 &Ml santo *Ferritorio negro arte nbm(page

ERABIOR G ca,
elo o d ILAMAmaﬂ}?;ﬁm 2l &
E{{rbrssﬁ))
&é@iﬁ@ dinfgira da e ia margey
0
ut co da Destriicao

Rlgseve s maginarios

narweg\ﬂrwa wbana _uopia Jha a escada pars 0 suce§ phado s"u\/\sta R srsele
ZeSIOCAMENO oicage Peri Er\aﬂjg&@lghave de Lilith
cartemas *Fortas-paredes” Pmu uu Jaraquncnlelﬂ\i erosefie Reforma ubana
) sevolucao HEngoddunime MW@ Sgy’aavman /m & sqor n o oseo
casulo marcas ubanas _Rua do Acu uﬁegaugur’a%m A Experiencia do Espaco
De Flaneures aolaristas lempn e pum M%W oD Fort istemas de g
EOMRETIRO espago quali Bl EDIERE] ° ﬂmﬁ%% dg Pagel, Ehhhhh
Rua %wgm@%w@m%ﬁ MESHRBNO QUE E SEU SOBStar ﬁéfa&%ﬁ@o RRAVENDA T
@W&WM&MW iy #Em@gmﬁﬁ grensagens :
Gronopolis e nos melmpﬂﬂ!‘ gabau
° mnd; ESbaco/ - termpo Limitantes a expansao o Mgwsﬁﬁimue\ ba"’f“ﬁf; aqRdE gmgrgm
Shwe CldacipETassie Menhattan pauisia 20 Grandg9epiRsao de Avaliacao tigfuldg _antevisao
irco Pay
K MORAR RO ‘ _sobre datcade NEHIRSRARIEL Rigaetes J—
g@g@ Sidgelg reginaria A d
palavia-chave o b GBEERRRAIELE e s = et Iy
1892~ ennogRRlERsaF a0 Informaticg eTrans«mmacaS‘Mlﬁé‘dW (dos)
produsao e conuindiBABE clay SRt - W%@SD ateo do Calegio) PLAND 1(
Pelsagern SIEUsAgonaas Convento gdgteado fadsisa beijo ezemm da Casa Verde e side
HIGIENOPOLIS VENDO 752 ¢ : ;
&
Demolido e 1971) T :
. ustaposicao memaFHEHhunciona -
SEALFARELS _note J prole Herois uBkFgsrelogio Barrafam do Guartel]

Figure 3: A snapshot of the status of the self-organisation.

Visual Client

The Visual Client component condsts of three sub-components. the keyword
browser, the database browser and a real-time sound system. One version of the visud
client, which is downloadable for the public, runs on a angle, sandard Windows (9x,
NT) platform and does not include the sound system. The second version has been
developed for exhibition purposes, includes dl three sub-components and needs three

Linux PCsto run.

Keyword Browser

The main change to the keyword browser has been done to the visua appearance. So
far, only points and lines where avallable to visudise the particles as they move and
accderate over the force field. In an attempt to make the intended visudisation of

information clustering more obvious, a coud-like visud style was implemented. Every
particle flowing acrass the force field is rendered by a smple square polygon with a
texture of a disc-like doud attached to it, in which the transparency vaue goes
gradualy from zero to 100% from the centre of the disc to it's circular border. The
trangparency of the texture can be scaed by an additiond factor to dlow for a very
high overdl transparency. By using blending, the intensity of a cloud structure increases
wherever the dengty of particles is very high. The result is that a areas with a totd

eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

force of gpproximately zero, the velocity of the particlesis low but their densty ishigh,
hence the particles are blended to black clusters. At areas with high acceleration, the
particles gain more velocity and hence their dengty is low, resulting in a very light
rendering of the fast moving particles. Figure 4 is a screen-shot illudtrates the start-up
Stuation. The user is aout to zoom-in on the position pointed to by the two triangular
wireframe cursors. The black areas are areas of low speed and higher particle density.

Figure 4: This screen-shot illustrates the start-up situation.

Figure 5's screen-shot shows the Situation after the user has zoomed-in two levels The
keywords become visible. The current location and sSize of the visble areain relaion to
the totd fied is shown in the upper-left corner. In Figure 6, the user has reached the
zoom level a which the individua keywords become readable. In Figure 7's screen
shot the user is about to select a keyword which would then open up the database
browser. The keyword she has chosen is high-lighted and rendered at a larger Sze at
the top of the screen. The upper-left corner now aso shows a second and a third user
exploring aregion in the immediate proximity.

September 1999 9

eSCAPE eSCAPE systems, infrastructures and techniques

Figure 5: This screen-shot shows the situation after the user has zoomed-in two levels

Figure 6: The user reached the zoom level at which the individual keywords become
readable

10 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

Figure 7: about to select a keyword which would then open up the database browser.

Database Browser

The decison to use the Netscape web browser as the data viewing component to the
visud client, was based on the fact that the Voodoo2 card, used for the keyword
browser, does not dlow the use of standard graphica user interface eements for
additiond information display and interaction (which would have dlowed for a sngle
screen setup). With the Voodoo2 card active it is aso not possible to use the standard
X11 desktop for interaction in paralel. As a consequence of this, the Netscape
browser has to be started remotely on a second Linux computer. Whenever the user
clicks on a keyword in the keyword browser, the visud client sends a parameterised
URL (depending on which keyword has been sdected) to the remote Netscape
window. The URL isbasicaly the path to a PERL CGlI script (residing on the database
server), containing the object ID of the keyword in the database. The GGl script
retrieves the data related to the specified keyword from the database, creates a frame-
based HTML page displaying the name of the keyword, the name of the editor, the
document (text, image, sound or video) and the history-map of the keyword. In Figure
8, we can see a standard Netscape browser showing the keyword (bilingual), the name
of the editor, the related document (an image) and the historymap. The historymap

shows the motion path of the keyword as well as other keywords in the immediate
neighbourhood.

September 1999 11

eSCAPE eSCAPE systems, infrastructures and techniques

=| Ne 7 0 O
File Edit View Go Ce i Help

10_dencies letrano muro / letter on the wall roise Moreirade Marchi

llllll HISTORYMAP

£l | [EST

Figure 8: A standard Netscape browser showing the keyword, editor's name, the related
document and the Historymap.

Sound System

The sound system is based on a red-time synthess dgorithm utilisng a physcd
modelling approach by smulaing the behaviour of a complex spring-mass system.
Several mass-points are interconnected by springs and damper elements. If one or
more of the mass-points are imulated by applying a momentum, the whole system
darts to oscillate. To actudly produce an audio sgnd, the amplitudes of one or more
meass-points are fed into the sound card output. With today’s available processing
power of a standard PC, a system with approximately 30 to 40 mass-points can be
simulated with an output frequency in the audible range.

For performance reasons the physical laws are modified, so that the mass-points
ae limited to oscillate in only one direction and the dongation of the springs is
measured by calculating the scalar difference between the postions of the two mass-
points.

Arbitrary mass-gpring topologies are possible by defining dl masses, soring and
damping congtants and a list of interconnections between the masses in a Smple text
file, which is read by the system during sart-up. Through a shared-memory interface,
the sound system is able to access the underlying force field vectors of the currently
vigble area, viewed by the keyword browser. The xy components of a subset of the

12 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

available force vectors are used to drive the parameters of the springs, dampers and
masses of the sound system. By trimming and adjusting the vaues through scding and
offsdtting, the result achieved is a dight but clearly audible change of the sound,

whenever the user zooms or moves the keyword window, i.e. changes the force field.
Additiondly, depending on the cursor postion over the force field, the whole system is
simulated with repesated impulses at different speeds and strengths, directly related to
the magnitude of the force underneath the cursor. The graphica user interface to the
physicad moddling sound synthesis is shown in Figure 9. The topology of the masses
and springs are defined in atext file, but dl parameters can be edited with the shown
tool.

Figure 9: The graphical user interface to the physical modelling sound synthesis.

Acknowledgements

Acknowledgments go to Knowbotic Research, the authors of the 10-dencies project
series, to Andreas Schiffler, who developed and implemented the force-field server
and the visud client/keyword browser, to Danid Berger who fine-tuned many of the
visua parts of the keyword browser and to Andreas Weymer, who developed the Perl
scripts to retrieve the database content with a standard web browser. Credits for the
sound system go to Alexander Tuchagek of Knowbotic Research.

September 1999 13

eSCAPE eSCAPE systems, infrastructures and techniques

Force Feedback Interface

Armin Steinke, ZKM

There exist so-caled touch screens, where the computer screen is aso an input device
for a data processing unit. In these cases the user can trigger pecific commands by
touching specific surface areas on the screen, and thus can communicate with the data
processing unit. Furthermore, there are dso movable data input devices such as, for
indance, computer mice, joydicks, etc. With these data input devices a cursor is
dragged across the computer screen and, whenever the cursor is moved over aspecific
object field on the screen, pressing a button can transmit a specific command; what
specific command is sent depends on what command is related to the corresponding
screen position that has just been “clicked on’. Datainput devices up to now have been
such that the user has complete freedom over the commands, and can podtion the
cursor wherever he wants.

The Force Feedback Interface is a data input device for a computer thet is smilar
to a digital tablet, by which a manud control device (mouse) can be moved across a
demarcated surface area. The position of the manual control device (Force Feedback
Interface) is transmitted in an absolute mode to the data processing unit (computer), so
that there is a direct connection between the position of the manua control device and
the current position of the computer screen (cursor). The Force Feedback Interface is
spring-coupled - for example, magneticaly - to a cross dide mechanism that detects
the pogition of the manua control device by means of sensors; when the manud control
device is moved the cross dide mechanism, which is driven by a motor, follows the
Force Feedback Interface. The spring-coupling between the manua control device and
the cross dide is designed so that when the positions coincide, no force (pring tension)
is exerted upon the manua control device; but with an increasing discrepancy between
the positions of the manua control device and the cross dide an increasing force isaso
exerted upon the manud control device. The tracking of the cross dide, which is
guided by the sensors, is then combined with computer generated commands that
depend on spatial and tempora coordinates; these commands cause the position of the
manual control device and the cross dide to deviate from esch other in a way
corresponding to the spatid and tempora dependency relation, and in this way a
directiond forceis transmitted to the manual control device.

The effect upon the user is that the manua control device on the computer screen’s
surface area is either drawn to specific quadrants or in specific directions, or becomes
difficult to move to specific quadrants or in specific directions (command fidds).

The surface area across which the manua control device is moved can be, for
instance, a projected surface area, upon which the current computer screen’s contents
are digplayed. Here there is an even stronger connection between the postion of the
computer screen and the effective force.

If this projected surface area is displayed as a background projection, the cross
dide should be desgned so that the projection is obstructed as little as possible. This
can be done, for ingance, by using thin sted wire or metal bands of the cross dide

14 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

mechanism, which are connected to a mechanism and - for instance - can dso tranamit
energy and sgnasto the cross dide.

Thus in this case the user moves a manua control device (Force Feedback
Interface) directly over a projected surface area; by moving the manua control device
in the projection the user aso moves cross-hairs (the shadow of the sted wire) and via
the manua control device experiences a force that is spatidly and temporaly
dependent.

Precautionary measures have been desgned that will limit the trandated maximal
energy and insure that the transmisson of force only tekes place when the manud
control device is being securely held. If the manua control device is released the force
transmisson immediately stops, in order to prevent the user from losing control of the
manual control device. We present an example of one design possihility for the force
feedback interface by means of the drawings below.

Siriophon fumn db Prajakian

TCET U LRGN
Sodenl, wf meickmn e Jorazer whair!

F—————
]
L

AP = (=

Figure 10: a cross-sectional view of the Force Feedback Interface station

Figure 10 shows in cross-sectiona view a Force Feedback Interface user station with
a base [1], upon which the user stands and an viewer [2] for reproducing images that
are created by a video projection device. The video projection device is mounted in a
relatively pardlel inclination to the viewer [2] and the projection beam emitted by the
video projection device is curved for the projection by means of a diverting mirror, o
that the images created by the video projection device are reproduced on the viewer.
Furthermore, provision is made for an additiona display that can serve, for example, as
an internet browser. Moreover, a cross dide wire mechanism s laid over the projection
screen, which in Figure 10 is shown in its deployed position.

September 1999 15

eSCAPE eSCAPE systems, infrastructures and techniques

Figure 11: a view from above of the Force Feedback Interface user station

Fgure 11 shows a view from above of the Force Feedback Interface user station
represented in Figure 10.

‘
- r@}
Ve jak
e

Figure 12: an enlarged drawing with detailed information concerning the Force Feedback
Interface user station

Figure 12 depicts in an enlargement details of the cross dide mechanism, showing thet
awire sysem is mounted on a cross dide, so that the cross dide can be moved in any
direction dong two dimensons. Every wire is connected to the opposite facing wire via
deflection rollers. Furthermore, by means of a drive mechanism a force can be gpplied
to the cross dide via the deflection rollers, whereby the given force is determined by
the position of the cross dide on the projected surface area.

16 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

Figure 13: an example depicting the effect of the force upon the Force Feedback Interface
when the computer screen is in a specific situation

In this Stuation the cross dide is pulled to the force fidld “MIN,” o that the user, if he
wishes to prevent the cross dide from moving there on its own, must produce a
corresponding counteracting force. It is obvious that with the novement of the cross
dide across the projected surface area corresponding to the current location, the user
continually experiences a different magnitude and direction of force. For example, if
reaching a specific location on the projected surface area is connected with a specific
command, then the user might yield to the given force (if the corresponding command
seems to him to be a good one) or might produce a counteracting force in order to
keep the cross dide away from the location of a specific force area, thus preventing an
undesirable command.

In Figure 13 severd ‘command locations , identified by the letters A, B, C, D and
E, are depicted. These ‘command locations each indicate a command that initiates a
specific auxiliary program sequence, if the user, for example, moves the manua control
device onto command surface A and then, if required, presses another command key
(for example, ‘Enter’). If the user does this on another of the command locations, a
different command might be given, so that the program initiates a specific sequence
depending on the commands given by the user. It is obvious that those commands that
seem particularly advantageous to the user (for example, in a game program) are

September 1999 17

eSCAPE eSCAPE systems, infrastructures and techniques

particularly difficult to reach. However, a command can aso condst of dlicking on a
gpecific window, while this window overlgps with aforce fid or specific force lines,

Figure 13 depicts five force centres (that perhaps might not be even visble) on the
projected surface area. In the Stuation depicted, the cross dide is located in a position
indicated by the cross-hairs. In this position and Situation the cross dideis pulled to the
nearest force field, so that the user, if he wants to prevent the cross dide from moving
there on its own, must produce a counteracting force. It is obvious that with the
movement of the cross dide across the projected surface area corresponding to the
current location the user always experiences a different force. For example, if reaching
a gpecific location on the projected surface areais connected with a specific command,
then the user might yield to the given force (if the corresponding command seems to
him to be a good one) or might produce a counteracting force in order to keep the
cross dide away from the area of a specific force surface area, thus preventing an
undesirable command.

Figure 13 presents only one Stuation at a specific point in time. In regardsto time
the situation itsdlf is continually subject to changes by a corresponding program <o that
there is no dtatic Stuation, but rather the momentary current force is subject to constant
changes and the user is thus chalenged to respond to these changes. A tempord
change means that not only the location of the force fidds ‘MIN’, ‘MAX’ changes, but
that their respective strengths also change. The spatia pogition as wdll as the strength of
a force fidld depends on a program that is executed by the data processing unit and
that connects specific commands with the spatia position of force fields.

Figure 14: a block diagram of a Force Feedback Interface

18 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

Fgure 14 shows the principle congtruction of the Force Feedback Interface in block
diagram format. Here the manua control device is arranged with the cross dide
mechanism on a projected surface area; the manud control device can be moved

across the projected surface area. The projected surface area is enclosed by a frame.
For the cross dide mechaniam y-axis drive and an x-axis drive will provide the
respective force in the x and y directions. Each axid drive is coupled to a
corresponding motor. Furthermore, for the x direction and the y direction an x-axis and
a y-axis measuring system will be mounted on the side of the projected surface area
facing the axid drive. This measuring system, like the drives, is coupled to the cross
dide mechanism, which in turn is connected to force recorders, by means of which the
forces acting on the manua control device in the x and y directions are recorded. The
data collected by the measuring system concerning the force acting on the manua
control device and the cross dide mechanism are processed in a postion-force
computer. This computer can be part of the data processing unit. This position-force
computer controls on the one hand the video projector used to show the images on the
projected surface area, while on the other hand it provides data about the current
forces acting upon the manua control device in the x and y directions, which are given
to a device that ingantaneoudy adds numericad values. This computer, moreover,

processes the data of the force recorders and performs an addition following the
formulae of Y + B for the Y force component and a summation X + A for the X force
component. The resulting data from the instantaneous adding device are processed in a
regulator, whose results are given to the respective X and Y motors by means of an
amplifier.

Overview of the achievements:

1. AsalForce Feedback Interface of afully developed data processing unit, which is
connected to a force-generating device and which recelves a directiond force
depending on its pogtion.

2. As a Force Feedback Interface of a data processng unit, which receives a
directiona force depending on the contents of a program.

3. Datainput device according to one of the previous claims, characterised by the fact
that the magnitude of the force depends on a positiona deviation thet is determined
by the position of the data processing unit and an idedl pogition.

4. Datainput device according to one of the previous claims, characterised by the fact
that the data input device is a part of a manud control device that is movable
across a demarcated surface area.

5. Datainput device according to one of the previous clams, characterised by the fact
that data input device is coupled to a data processing unit and that this data
processing unit determines severd time and/or location dependent force fields on
the surface area, across which the data input device is movable.

6. Datainput device according to one of the previous clams, characterised by the fact
that the surface area, across which the data input device may be moved, is a
display for reproducing images that are cregted by the data processing unit.

September 1999 19

eSCAPE eSCAPE systems, infrastructures and techniques

7. Daainput device according to one of the previous clams, characterised by the fact
that the data input device is coupled to a cross dide wire mechanism, by means of
which the respective force is applied to the data input device in away that depends
on position and program.

8. User interface with a data input device according to one of the previous clams,
characterised by the fact that the surface area, across which the data input device
can be moved, and the indicator surface area at least partialy overlap.

The Distributed Legible City

Andreas Schiffler (ZKM) & Steve Pettifer (The University of Manchester)

In early April 1998 a design proposa was made to implement a multi-user version of J.
Shaw's at inddlation ‘ The Legible City’. A number of new facilities were posited, with
the primary am of generating an environment in which there was enough ‘ of intere’” to
encourage socid engagement between the environment’s inhabitants. These features
included:

graphics smilar to the origina inddlation

to use consumer technology such that the indtdlation could feasibly be built for

‘home use

to add avatarsin form of animated bikes to the scene

to support severa playersin one city (multi-user cgpability)

to incdlude posshility of scene-leve interaction (for example the joining of two

players to form atandem)

to have player interaction through a voice channd that is proximity controlled (i.e.

‘you hear X when X isclose).
The implementation design was based around a standard client-server sructure in
which the server maintains a consstent gtate for the virtud city, provide network
services and controls the audio system, where the client provides the visud output and
manages the user interface. Audio interaction on the dient Sde will make use of a
separate phone or headset. The hardware design was build around a high end PC with
consumer 3D hardware and free software components. Connectivity was (origindly) to
be achieved with Digitd- Smultaneous-Voice-Data (DSVD) modems and standard
andogue phone lines.

Design changes

Two changes were included in the find work plan. One was to use a modified exercise
bike as the interface jugt as in the origina ingdlation. The bike as an interface adds
physicd interaction and involvement and isa‘trademark’ of the origind ingdlation. The
second was to include a new level of interaction with the world via voice recognition.
One would let people populate certain streets in the virtud world with words that they

20 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

gpesk while moving. This required the addition of a second PC that would handle the
interface and recognition tasks on the client Sde.

The Implementation

Hardware and Software Platform

The find hardware platform has these key eements.
- Dud Pentium Il PC with Dual V oodoo2 graphics adapters for client
21" monitor as display for each client
Pentium PC with Force Feedback Joystick and AD/DA card for client
Pentium PC with multi-port serial card for server
Audio and network capabilities on dl computers
Modems on dl computers
Custom build anaogue audio mixer with computer control
Custom build exercise bikes with anaogue outputs for speed and direction
Qudity head-sets and audio hardware on each client

The software platform makes use of these components:

Linux distribution with SVIP enabled

Standard Windows 95

Glide/Linux drivers and Mesato run OpenGL on Voodoo2 cards
Manchester University's MAVERIK/Deva graphics system
SpeakFreely audio software

IBM ViaVoice recognition software

Many custom programs and scripts

The Graphics Subsystem

September 1999 21

eSCAPE eSCAPE systems, infrastructures and techniques

The graphics in the Digtributed Legible City are generated usng MAVERIK, rendered
via the Free Mesa ‘OpenGL workdike libraries. Interactive frame rates were
achieved usng an experimental driver for the 3DFx Voodoo2 Cards and the
GNU/Linux operating system.

Figure 15: Scenes from the DLC

The MAVERIK (Cook, 1998) software is being used for scene management and
as generd graphics interface for the digtribution system Deva (Pettifer, 1999). In the
process, the Digtributed Legible City was first implemented as a standaone verson
within the MAVERIK system. We could build upon an existing demo program that
loaded the origina Legible City databases and alowed navigation. The fina program
was extended to include dl three cities that are sdlectable in the origind inddlation in a
specid layout and with streets connecting them. Other graphical features and colour
sttings mirroring the origind were induded. A ground floor and a sky were
introduced. The possibility of displaying a 2D map as an overlay for navigeaiond
purposes was added. This program was then integrated into the Deva system, so it
could be loaded as a Deva object on request. In a similar fashion the biker avatar was
added. An initid modd of a biker was created and stored in a format readable by

22 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

MAVERIK. The biker consisted of 11 different objects that were placed dynamicaly
by a program for each frame being displayed.

Figure 16: The cyclist avatar

This dlowed the smulation reditic foot, peda and am movements depending on
current speed and direction. A standaone biker was adso converted into a Deva
object. The digtributed version of the Legible City was then made viewable by cresting
acity and severd bike objects within the Deva system. Each client would in turn run a
viewer program that attaches to this scene condigting of the cities and the three bikes.
The viewer then dtach its own camera-view and cntrol to one of the bikes in the
scene. This is done through externd Deva commands. Simultaneous changes to all
positions while the viewers are running are then propagated through the Deva server to
dl atached viewers. The dynamic lettering of the dreets via the voice recognition
would have been implemented in a Smilar fashion, but was left out of the exhibition
verson due to time congtraints during the development period.

The Interface System

The user interface in the exhibition verson was s0lely the exercise bike. It provides two
degrees of freedom (speed, direction) and a button to toggle the map display. During
the development period the joystick was used as a subgtitute input device. To drive the
joystick's force feedback capabilities Windows95 is required. Force feedback with the
joystick was being researched at the Manchester University on different gpplications,
but was never implemented for the Digtributed Legible City since the bike was the input
device of choice. The AD/DA card that was used by the ingtdlation could only be used
from a Windows platform. Because of these software congtraints, a separate interface
PC is employed. Two interface-server programs run on the interface PC. They are
queried by a Unix dient program running on the graphics PC through a local network
connection in regular intervals (100Hz) and made available to the MAVERIK/Deva
system through a shared memory segment. The interface PC was aso running the voice
recognition software, which was not used in the exhibition version as described earlier.

The joystick is connected to the sound card of the interface PC and gives direct
readings of X and Y postions of the handle as wdll as the status of al buttons.

September 1999 23

eSCAPE eSCAPE systems, infrastructures and techniques

The exercise bike was modified to provide three voltages that could be read by the
AD/DA cad. The first voltage corresponds to the speed of the peddling and was
produced by a smal generator that is directly attached to the fly-whed in the bike. The
second voltage corresponds to the steering direction of the handle-bar. It is generated
by a linear potentiometer in the rotatable handle bar through an applied externd
voltage. The third voltage give the button status as two voltage extremes in a Smilar
fashion.

Figure 17: The DLC exercise bike and station

All software programs on the interface PC are designed to be controlled through a
network connection. They will wait for a TCP/IP connection on a specific port number.
Once a client is connected, they are will retun the information as ASCII text on
request. This alowed easy testing using the telnet program.

The Audio Subsystem

The initid specification caled for a DSVD modem to trangport phone-grade audio
between the server and the clients while a standard PPP connection is being maintained
at the same time. This mode of operation is mainly used by computer game users to be
able to play and talk to an opponent a the same time. During the design process two
sets of modems were tested and rejected because of the low audio qudlity atainable if
they were working at dl (the first st didn't). The find implementation made use of
network audio through the sound card of the PC and a set of Unix programs for
recording and playback. This would assume that there exists a sufficiently fast data
connection between client and server. The headsets are connected through a
multichannd-audio mixer to dlow easy volume and level control. The microphone
output is split and connected to the interface PC (for the voice recognition) and the

24 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

graphics PC (for audio interface). For each client-server audio connection a set of four
programs from the ‘ speak-fregly’ freeware program suite: one to send the microphone
input to the server, one to output this to the mixer, one the send the mixer output to the
client, and one to output thisto the headset. The mixer is a custom hardware located a
the server dte. It implements amixing grid for three inputs and three outputs that can be
controlled through the pardld port of the server PC. Since it was not possible to drive
more than one sound card on the server PC reliably, two more PCs in proximity to the
server are being used for audio recording and playback. During operation, a pecia

routine within the Deva server would record the poditions of the three bike objects,

work out the distance between them and send volume control information to the mixing
grid in one second intervals. The distance a which the volume was reduced to zero
was gpproximately the distance used for the culling (i.e. the distance a which graphical
objects disappear in the fog and are not drawn anymore).

The Networking

Since dedicated DSVD modem connections to the server were not used, the system
was being connected through regular ethernet. Each of the three clients and the server
were given a separate | P address and were connected to the network. The two audio
computers were dready pat of the ZKM network and were amply tied into the
ingtalation infrastructure. The loca ethernet connection between the interface PC and
the graphics PC was initidly done through a mini-hub and loca IP numbers from the
192.168.x.x subnet. This was later changed to a separate, independent local network
connected with a single short cable. The graphics PC was equipped with a second
network card for this to work. To be able to place one of the ingtalations at a remote
location without requiring a connection to the Internet, an ISDN didup into the server
was inddled. Through a ISDN-Termina adapter and the PPP protocol aremote client
could connect to the server for DEVA and audio data exchanges. The connection uses
an Euro-1SDN connection and two channds through bundling to achieve a theoretica
throughput of 128kbps (limited by the serid port of the computer to 115kbps).

The Presentations at the ZKM and IST

The vigble pat of the ingdlation (client computers with bikes and monitor) was
integrated into the common design of the Surrogate 1 Exhibition a the Centre for Art
and Media, Karlsruhe (ZKM). The setup conssted of a three section ground plate that
was hollow so that cables could run underneeth it. Attached to the plate was a
rectangular three piece arch of 2m height. Underneath the arches top, a metal mount
held the monitor at viewing height and angle between the arch sdes. Below the monitor
was abox containing the computers and other equipment. The bike was placed in front
of the monitor and was loosely attached on the ground plate. All wires to the bike and
computer box are hidden and detachable. On the bike is a connector for the headset
that was placed on the handiebar during use. The three systems were placed a
different locations within the ZKM during the exhibition time (1 Nov. - 6 Dec. 1998)
and were connected via ethernet. Two systems were within visible range of each other

September 1999 25

eSCAPE eSCAPE systems, infrastructures and techniques

and placed o that users can see each other; one in the foyer of the ZKM entrance and
another on the firdt floor above the foyer. A third system was a a more remote location
on the second floor. In most casesthere is no staff present at the ingtalation and people
are free to experiment; only once during a specid presentation of »Surrogatex
ingdlations to invited guests, technicd daff was present to answer specific questions.

During the IST '98 conference in Vienna one of the system was disassembled and
setup again in the ‘future technologies and interfaces exhibition space of the IST. This
time the ISDN connection was used to link the bikes in Karlsruhe and Vienna. The
main differences during this exhibition were that the audience conssted of mosly
professonds, the fact that the bike at IST was staffed most of the time and that during
two days of the conference only two bikes were used in the virtua world, since the
ZKM was closed to the public during these days.

During the exhibition we encountered two mgor problems with the physical parts
of the ingtdlation: The pedds of the bikes broke off during the heavy public use and
needed to be welded on permanently. The headset wires were severed frequently and
replacement headsets had to be used.

Figure 18: Theimmersve DLC a Essen

Evaluation and Comparison

The ingdlation achieved in most parts the cagpatiilities outlined in the origind proposd,
athough several features were changed, dropped or did not work as well as planned.
The overdl fed and look of the new version of the ‘Legible City’ was comparable to
the origind. This of course gems from the fact that the origind database for the city
layout and the fonts were used in a one-to-one fashion. Differences in the graphics
were mogily due to hardware condraints and implementation shortcomings. Fogging
did not work as well on the PC platform asit did on the origina SGI program. This can
be fixed easily by some program changes. The overdl graphics frame rate was good
except when the biker avatars came into view. Thisis likely due to the Linux/\Voodoo
driver implementation as wdl as the Hill very high polygon count of the modd. The
deering with the bike fdt initidly different as compared to the origind - dthough thisis
mosgtly due to the differences in bike-interfaces physical and dectrica design, software
updates during the exhibitions improved this. The qudity of the steering interface did
deteriorate noticeably on the system that was used the mogt in the foyer of the ZKM.

26 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

The joystick was dropped as an input device for the exhibition verson. The University
of Manchester made active use though of the joystick's force-feedback capabilitiesin
other gpplications to ad in navigation. Severd users expressed much interest in force-
feedback capabilities of the bike - especidly when consdering the placement of such
aningdlaion into afitness sudio. The biker avatars worked well as a representation of
the connected users. People spend much time in the world locating the other users and
‘chasing’ each others avatar. The avatar dynamics were congraint to just the pedd

movement in the exhibition verson (no am or head movement). This was the case
because of difficulties with the Deva integration of the interfaces. Users did not express
this as a lack of detail. The multiplayer capabilities implemented through the use of

Deva worked reasonably well. Some of the problems encountered with the Deva
sysem were difficulties in overdl sysem corfiguration, the tuning of network
digribution parameters for specific network bandwidths and the addition of custom

control code. This lead to erdic frame rates from time to time during the IST
exhibition (where a reduced bandwith connection was used). Scene levd interaction
was not implemented in the exhibition verson. Especidly a ‘tandem’ function that

alows one user to teke aride done with another useis likdy abig shortcoming, since it
was difficult for users to say in proximity while moving around - a requirement for
continuous audio connection. The user interaction through the audio system was poor.
This was partidly due to the overdl qudity of the connection. Until the software was
updated, a discussion could only proceed in a very restricted and dow manner, snce
there was a long delay (approximately two seconds for each server-client connection)
introduced by the network-audio programs. This delay could be reduced by software
changes during the exhibition to a level that made conversation possible. Overdl audio
quaity was aso a problem as digtortion and noise was introduced due to the fixed level

input, the software programs and its compresson mechanisms. The goas st for the
audio sysem in the proposd was therefore not entirdy met and warrant a re-
implementation, should such a system be used again in this or another context. Overdl

the system was easy to use by vidtors to the ZKM and at IST. The interactive
capabilities were not used by vistors as much as anticipated. This is due to the
technicad shortcomings as well as a matter of rasing user awareness of the systems
capability through presentation and interface.

Possible new Developments

New developments with the Digtributed Legible City should be guided to advance the
interactive capabilities of the ingdlation. Snce audio connectivity is the prime
interaction between users in this inddlation, the audio syssem needs to achieve a
greater qudity to be ussful. Since the audio system interacts with the virtud
environment by proximity control related help functiondity such a »tandem function«
could be added to ad the user in engaging in a conversation. The mgp - the user
interface for navigating - should be more decriptive and aid the used more in finding
other people n the virtua world. Colour coding the physcd set-up and using a
correponding virtua coding of colours can help as well in finding people. Since the

September 1999 27

eSCAPE eSCAPE systems, infrastructures and techniques

user interactions take place within a text, it should be made much easier to read the
text. This could be achieved by employing a head-mounted display with directiond
tracking that dlows to bike forward while looking Sdeways. Other functiondity, such
as a dill image link between the systems could help users identity the possibility of an
interaction with another user - especiadly when systems are completely separated

physically.

Nuzzle Afar

(Maski Fujihata, Annika Blunck, Keth Vincent; ZKM)

Nuzzle Afar is not a work which delivers a completed world view to its visitors. The
world of this work is provided as an interactive environment constructed and
transformed in red time by the presence and activity of other users. In the exhibited
verson Fujihata presented in November 1998 (in the Surrogate show at the ZKM),
vigtors were given roles as navigators through a virtud world while smultaneoudy
participating in the creation of that space. This proved quite a chalenge even for those
who were familiar the participatory nature typicd of smply sructured interactive
works. Such works do little more than provide a set reaction in response to the action
of the users. Their objective is Smply to make the vistor aware of an interactive
environment and as such these pieces do not get beyond the level of enjoyment one
can have in seaing that a light comes a the flip of a switch. Exhibits functioning on this
level are concerned soldy with how to get visitors to flip the switch. In Nuzzle Afar
however, it was necessary to get users to discover the operating modes of cyberspace,
to discover others within it without whose presence it would be incomprehensible.

The Interpretive Process

The conventional method for appreciating a work of art congss of unraveling and
interpreting meanings which are assumed to exist within the work in a condensed form.
Interpreting meanings requires an understanding of the cultural codes which subtend
them, just as reading a book rooted in another culture requires an assortment of
reference books and dictionaries. Trandation is thus dependent on the trandator's
ability to make judgments about the level a which those cultural codes are to be
converted. In the process of interpretation the reader activates these cultural codes in
his brain in such away that the relations among the various dements represented in the
work gradualy come into focus. This is an interactive process, but one that occurs
entirdly indde the mind of the reader (and it might be one of which he or she is not
aware). This interactive spacetime is intellectudly enjoyable for the reader. However,
the challenge is how to seperate this time/space interaction from the individua brain
operations of the recipient and merge it with the content. The am would be to visudize
perception and interpretation through interaction. It would not be a question of
conversing with the work in order to read it and then moving on to the process of

28 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

interpretation. Rather, this would be a completely new form of art in which the Ste of
interaction with the work would itself be the space of interpretation

Intellectual Activity and Experience.

In Nuzze Afar interaction takes place on two levels. On the firg levd, the user
navigates through cyberspace via an interface connected to a computer. Interaction
here dlows the user to come to know a kind of space and spatia continuity which
differs from that in the red world, the Nuzzle Afar World. Most VR works stop here,
amply setting up the relaion between the user and the projected virtud world. In
Nuzzle Afar, however, the objective is to enter into interactive relationships with other
people through the network. While the first stage of interaction in front of the machine
Is designed to function as a lead-in to the next stage of interaction with others, on the
second level the Nuzze Afar World provesitself as a system whose ultimate god isto
create a pace where people can discover new relationships with others.

The space of the tory is open to each vigtor from the beginning, and dramas can
be expected to unfold from the relations between the sdf and others. The idea that we
could render transparent the interface between the world and oursdves smply by
Siting up an immersive environment using an HMD (Head-Mounted Display) was
certanly overly optimigic. But even in the red world communication with others
involves a whole array of manners and customs and there is no reason to believe that
anyone can spin his or her own tde smply by changing interfaces. Even more than
interfaces there are any number of environment-creating inventions, such as the
postcard, the telephone, and travel, which are crying out for reevauation.

Users can weave their own stories in complete freedom. And yet precisdly this
freedom may give rise to a certain melancholy. Indeed, users of this work have to be
extremely proactive vis a vis the Nuzze Afar World. It cannot be enjoyed in the way
one reads a novel or watches a movie. Users must pay a price for the freedom to tell
their own stories. Compared to the effort put in to acquiring the knowledge to interpret
narrative worlds by conventional readers, the proactivity of confronting a new world
may not seem like much. But what holds it back is not inherent to the experience itsdlf,
but the result of an excessive cautiousness combined with the particular intellectud style
which snce the advent of modernity has caused us to privilege abstract knowledge
divorced from the scene of action. In our future intdlectud activities we must rid
ourselves of this habit of digancing ourseves from redity. We need to remind
oursalves once more that knowledge is acquired solely through lived experience. The
difference here is like that between looking at a chart of insects and making an insect
collection. In this sense, Nuzzle Afar provides the user with a space in which to collect
insects and to enjoy observing those insects (or other people) afterwards. During the
process of interacting, the user will become aware that observing someone ese
involves being observed onesdf aswell.

When it comes to actudly creeting a work, designing the presence of the sdif in
gpace and its embodiment vis a vis that space are extremely vital dements. Of course

September 1999 29

eSCAPE eSCAPE systems, infrastructures and techniques

these functions can adways be fa removed from those actudly exigting in the red
world.

The Modeling of Communication.

The Avatar Function.

Works like this one which dlow multiple users to share the same cyberspace are
referred to as "shared virtud environments' or "digtributed virtud redity”. The fidld was
origindly pioneered through text-based software known as multi-user dungeon or
dimensons (MUD) or MUD object-oriented (MOO) systems. MUDSYMOOs are
novelistic worlds constructed through interactive texts. In these highly aostract worldsiit
is possible to carry out experiments with relative ease that would be impossible in the
red world. In actudity, however, the kind of communication they make possble is
beset with the same kinds of confuson and ethica problems that plague the
confessona nove. Users discover the plessure of putting on different masks through
the avatars which serve as their ater egos in the virtua world. While a noveist has to
bear some respongibility for the avatars he or she creates, MUD players are dmost
never held accountable for the actions of their avatars. (Avatar is a Sanskrit term
refaring to spiritud bengs who manifest themsdves in the red world as the
incarnations of deities.)

Currently there are many three-dimensona versons of MOOs (including Sony's
Cyber City and Ultima On-Line). These are designed to alow people to encounter
other users while interactively manipulating a three-dimensona space in red time.
Usars accessng this three-dimensional space through a network ae able to
communicate through avatars. Most of these programs use avatars with human shapes,
though the conversations take place by typing on the keyboard. As soon as the
communication begins to be text-based the user's character as mediated through the
avaar reverts from the visud to a textud world. The addition of a visud leve
distributes the communication and action into two areas. The user’s concentration must
either switch between both levels or neglect one in favour of the other. Images here do
little more than provide the occasion for encounters in a rdatively cumbersome fashion.
Little red progress has been made in terms of communication style. Ultimatdy we are
only reminded of the superiority of verba communication.

The desgn of avatars is an extremey important eement in making new
communication possible in this kind of spaces. Most works thus far have used avatars
modeled dter actud human beings. The trend now is towards avatars with the physica
gppearance of human beings who wak around just like people. The main engineering
research laboratories are devel oping technology which picks up bodily communications
such as movements, gestures and facid expressions and expresses them directly in the
virtua space. Rendering al of the information expressed by our bodiesinto virtua form
may be a chdlenging task for engineering researchers, but ultimately this work haslittle
meaning. Even if we were able to perfect this system, it would not represent any red
advance dnce we would only end up bringing the limitations of our bodily

30 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

communication devices into the virtua world. Usng computer technologies requires
that we undergtand their limits and work to adapt our bodies to them. In order to
reduce the work of adgptation to a minimum the interface mechanism should be as
ample as possible. This amplicity should make it easier for the body to react fredly.
For this reason it is meaningless to devel op sensors and interfaces to gather information
in accordance with the complex structures of our bodies. Ingtead it is more important
to desgn the interface structure as Smply as possible while ill dlowing for the most
meaningful manipulations.

There is no reason to bring the bodies with which we act in the red world into
virtua space. Abgtract representations like text should be sufficient to conditute a
virtual world. However, the mode of expresson should be functiond rather than
forma. The outward gppearance of the avatar is not dl that sgnificant. It is only
necessary to be able to distinguish one avatar from another. The design of the physica
gppearance of the avatar has hardly anything to do with the design of communication.
Functiondity is mogt important here. Spatia relationships must be visudized, distance
from others must be made clear, and the mode of the sdf must be clearly marked.
Once these basic conditions have been established we need to concentrate how the
users will get their ideas across to others. There are many important functions to be
designed before we concern oursaves with controlling the facid expresson of avatars,
Which communication functions should be expanded? What effects would this
expanson bring about? Which bodily functions are unnecessary in cyberspace? In
order to get beyond the limitations of conventiond communication we have to
elaborate those functions which can only be established within cyberspace.

By making it possible to experience changes in the distance between onesdf and
others in an intentionaly composed space we should be able to show changes in
relations among individuds in a new way. Nuzzle Afar is characterized by its spatiad
functions intentionally composed with this in mind. Distance here does not refer to the
continuous distance of geometric three-dimensona space. Rather the emphass is
placed on the sudden changes in distance resulting from mutud interactions. These
represent encounters and it is here that greetings are exchanged. Human relations begin
and end with greetings. Connections among people begin with greetings. Once the link
has been established direct interaction begins, and depending on the quaity of that
interaction differences arise in the distance among people. People come closer together
just as they drift apart. The quantity and speed of information exchange aso effects the
way we distance ourselves from others. The space of Nuzzle Afar isdesigned in away
that any contact creates a different kind of space shared only by those coming together.
Contact in cyberspace is not like physical contact among people in the red world. In
Nuzzle Afar it is conducted among avatars as new spaces arise when one enters the
avatar of another person. However, the meaning of this contact only becomes clear
when one redizes that entering into someone ese's avatar aso means having that
person enter one's own.

September 1999 31

eSCAPE eSCAPE systems, infrastructures and techniques

Relationality and Distance Through Hyperlinks.

In virtua spaces following the MUD modd each avatar has its own room. The contents
of each avatar are expressed by itsroom. In Nuzzle Afar each contact creates alink to
a different dimenson, something like a hyperlink. Entering into another's avatar is like
clicking on a hyperlink and moving to another level in which the contents of that avatar
(or more precisdly, the worlds of the avatars) are brought to life. This is not a
continuous world. In the relationships of gpaces brought about by these hyperlinks it is
possible to creste an inescapably different dimension. Here we have the two-layered
Spatidity of hyperspace. Extremey interesting possibilities open up between the three-
dimensona world made vishble by computer rendering and the rrdimensiona space
(which one might smple cal media space) arising from hyperlinks. What we need to do
is understand and effectively exploit the multi-dimensiondity of cyberspace, where its
red strength and power lie. Nuzzle Afar is ultimately concerned with the future
potentia of this n-dimensiona space.

The Intimate Sphere.

When users encounter each other in the virtua environment of Nuzzle Afar a different
pace emerges and the users enter into a new mode. (This is what Fujihata cals the
"intimate sphere.’)

Figure 19: An “intimate sphere” seen from (a) the outside and (b) inside.

Here one has to coordinate one's actions with the other's. The system is designed
50 that the only possibility to return to the initid public space is by cooperating with the
mutual partner. (Users can move back to the space before by causing their images to
overlap.) The sense of distance in this space is different from that in the public spaces.
It would be possible to make these mode-changes more diverse than they are in the
present version of Nuzzle Afar, but in order to make it functiona within an exhibition
gpace which can accommodate an indiscriminate number of users and where the time
frame for understanding how to handle the interface as well as the interaction itsdf is
rather limited, Fujihata decided to keep that variety to a minimum. The result is that
some people are left unsatisfied. It could be possible to change the mode of each world
depending on the method of contact. But in practical terms, the only necessity in the

32 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

current phase is to transform the variations according to the differences in the threshold
of interpretative ability among the users vigting the exhibit.

Space and Memory.

Opening up new worlds through contact with others can be compared to dicking with
the cursor on an icon. In this artistic cyberspace one accesses the contents of a three-
dimensond object by bumping into it. Nuzzle Afar in one sense makes the desktop
environment of the computer or its operating system into a three-dimensiona space. At
the same time, if we consder urban space as a kind of media, the mode of abstracted
human relations offered by this work might be consdered as an example of the
desktopization of urban media. There are possbilities to explore in either direction.

The avatars designed in Nuzzle Afar have another digtinctinve characterigtic--their
ability to map memories on atempord axis in spatid terms. Vis a vis the directionaity
of the tempora axis, computers have a specia ability to remember the process of nor+
linear operations. (The "undo" function is a familiar example of this ahility.) Applying
this ability to the communication systems of the present work it is possible to record
gpatialy the processes of movement and action of human beings in the virtud worlds
In fact the path taken by avatars is preserved by drawing a line in the 3D space. This
means that even if another person's avatar itself is not visible (because the projected
scene away's represents the individua perspective of the user in the virtud space) it is
possible to see which avatars have passed through the same space seconds before. A
small sphere is atached to the end of each line and when the sphere is captured the
computer automatically traces the path of the line bringing the user to the avatar's
current postion. By this feature memory has been inserted into the space; something
which is not possble in the spaces we inhabit. It exists as a metgphor but is not
something we are able to witness directly. For example, others are able to find out
about or even meet the authors of published books or statements in the media by
picking up their traces. But when these people no longer exist, memories scettered in
gpace become the medium through which we can interact with them. These are traces
without avatars.

There is no reason why a trace has to be a monotonous line. It would aso be
possible to express the amount of time the avatar spent in a certain space and what it
did there by varying the thickness or color of the line. Currently, when two avatars
meet aplate is left behind in the space that records their meeting, documenting the time
and place of the encounter as well as the video-captured faces behind the never-
changing avatars. However, it should be possible to make this a much more complex
function. These memories on a tempora axis might be compared to the dramas
inscribed in the individua wrinkles on an old person's face. But that is not to say that
we need to create avatars with the faces of old people. Because these plates are
badsicdly the products of the connection of two times they were origindly caled
"nodes." By designing these "nodes’ as a kind of crossroad it would be possible to
render time non-linear and go back to an earlier crossroad, o head off in another
direction, or to retrace a path. In addition to tracing the steps of others it would be
possible to retrace one's own steps as well.

September 1999 33

eSCAPE eSCAPE systems, infrastructures and techniques

Inthe origind desgn Global Interior Project # 1-3, these nodes were rendered
as spheres and any ser of the gpplication was able to go insde them. The idea was
that once insgde you could see and listen to the conversation that had taken place there
on video. But snce we were deding with an exhibit that would accommodate any
number of users Fujihata decided to limit the number of these node spheres. If he had
not done so the space would soon have overflowed with nodes. Limiting their number,
however, gave rise to a phenomenon that was completely impossible to understand.

If the following facts were edtablished, ultimatdy the system rendered an
unsolvable problem:

There are alimited number, perhaps ten, node spheres in the world.
Each time a new node sphereis created the oldest one is extinguished.
Say that two avatars meet in the oldest sphere and create a new one.
The birth of the new sphere causes the oldest one to be erased.

Because the new node sphere came into existence beneath the world of the
oldest one, the subordinate new one is erased dong with it when the old one
above disappears.

6. This means that the two avatars which created the new node sphere must
disgppear aswdl. (Thisis where the problem arises))

o s~ wDN P

This specid instance shows how objects created to record encounters erase the
entities out of which they themsdves arose. Thisis a very clear example of the way a
highly commonsensicad judgment can naturdly create discontinuous fissures in a
redigtic world. Without any doubt, smilar incidents actualy occur in the red world we
inhabit.

This particular case makes one redlize hat the everyday continuous "sense of
exigence" we take for granted is actualy produced by a ceaseless effort on our part as
we live our lives and go about the dally work of repairing these fissures. By modeling
human reaions and insarting them into cyberspace we find ourselves beginning to
question the spaces we inhabit in the red world and the functions of those relations.
These questions probably belong to the realm of philosophy. But the novelty produced
by thiskind of technology results from the fact that these questions arise not in language
but in an experientia space. And finding answers to them cannot be accomplished
through contemplation based on language but only by the actud attempt to programme
the world. Congructing a fissure-less and continuous world view through red
programming is an extremely difficult task.

Ancther example can be offered. The present work, as will be explained in the next
section, uses multi-cast technology and lacks the central adminigtrative device known
as a srver. This means that each avatar gathers information on its own and constructs
aworld which is then diplayed visudly to the user a the termind. In fact there is no
guarantee that the same world is being displayed on every termind. The problem here
arises when someone joins in late. He or she would lack the information relaing to
events which have been recorded in the space. This Stuation seems to conform best to

34 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

redity. However, for exhibitionin a museum the system had to be designed in such a
way that each time this occurred the entire world would be reset. This is another
example of privileging the continuity of the world asawhole.

Content and Form

The Godless World of the Serverless Network.

The world view of NuzzZe Afar is made possble by network-based computer
technology. The information made visble by each computer termind for users is
permanently updated by collecting information digtributed throughout the network
transmitted by others, dong with the information stored and distributed in advance. If
we think of each computer as a human being, expressons on the display are renewed
by the information spoken by each person. Even if the usars remain motionless, a
conversation is aways going on among the computers on the network. Here thereisno
superior system that understands the whole and records it as necessary. Networks
which do have such a superior system at the center are of the server-client type. In
these systems each individual computer congtantly reports on ist Stuation to its superior
and obtains information about others by retrieving that information from the server.
Clearly, cresting this kind of system (or world) may cause the information exchanged
there to double in quantity. But a"democratic’ design has the advantage of kegping the
information ingde the network to a minimum. Indeed, in this democratic world the
model whereby each individud gathers the information he or she requires is much
closer to the Stuation in the real world. In this sense the grestest problems with the
technology that underpins this work are quite different from those with older
technologies. Works that thematise this kind of network are characterised by the great
number of problems which have to be determined in profound relation to the problems
of the forms of information distribution and the priority of vaues.

Delay and Accidents.

The advantage of a network is that it makes it possible to connect a number of Stes
which are separated geometrically from each other. And yet one aways has the
problem of information delays caused by the network. In November 1998 when we
connected the Shonan Fujisawa campus of Kelo University in Jgpan to the ZKM in
Germany it took approximately 0.3 seconds for information to be transmitted and
come back. This was a completely insurmountable temporad delay which demonsirated
that no two Nuzze Afar Worlds realized on different computers are ever exactly the
same. Thiskind of delay can adso sometimes cause accidents. When, for example, two
avatars come together and form a node sphere it is possible that one of them might
escape into another gpace before it recelves the information about the collison. The
result isthat a node is formed without one of the partners appearing. The world will not
collapse as long as the terminal is able to absorb the delay, but when it faillsto do so a
discontinuous fissure opens up. Like the ethical fissures mentioned earlier there can dso
be rifts on the tempord axis.

September 1999 35

eSCAPE eSCAPE systems, infrastructures and techniques

Display Mechanisms and Identity.

Nuzzle Afar was designed as an exhibit. The understanding was that an indeterminate
number of people would vist the exhibition and a certain number of them would work
with the terminals. Because the avatars floating in the space are expressed in each
termind as sngle avatars they lack a unique identity. In fact it was impossible to give
them a unique identity. Also it was impossible to ingal complicated interfaces. For this
reason Fujihata used track bals, no keyboard or buttons. In addition a microphone
and a camera were indalled to smplify the communication. The smdl red track ball
was the only tool with which the user could control the world. Nonetheless it took
some time for the user to learn how to navigate and explore the projected world. In
order to communicate the richest content possible through an interface absolutely easy
even for an unexperienced visitor to operate, different forms of reporting information in
the exhibition space had to be developed. It was like moving from the 1960s when
televisons were shared by the public on the street to an age in which each home had
three or four televison sats)

The Fantasy of World Continuity.

It would be a mistake to view this work in the context of conventiona "Electronic Art".
It is not possble to survey dl its dimengons from the perspective of "Man and

Machine'. Discontinuous worlds cannot emerge in this kind of exhibition space.
Because the work is actualy only a machine which operates twenty four hours a day

these would be judged as bugs or break-downs. It is not the purpose of this work to
manifest amechanica world view. What it teaches usisthat the world is actudly ridden
with fissures. "Redity” is something that is produced at every moment as one lives one's
life, where damaged sStes are congtantly being repaired. These fissures are sewn
together with great finesse and gppear most characteridicaly in what is known in the
debates over virtua redity asthe "process of making the virtud red" or vice versa The
fact that we live our lives today without being cognizant of these fissures is attested to
by the fact that we al believe being modern; we believe that we are able to transcend
them. The vast mgority of works deding with this kind of virtud space have been

created and spoken about only for the sake of this novety and chic imege. But Fujinata
believes it is more important to have an accurate awareness of these fissures. And the
only way to accomplish that is to move away from the Site of action and take one step
back. The sense of redity as something incongstent and discontinuous lies within actua

experience. It is something we are made to ignore. And yet the viewers of awork will

not wait for this. Nuzzle Afar offers the experience of taking a step back in a different
form as the experience of the viewer. Its god isto make the fissures with redity appear
in front of the user, and by this prepare him for the advent of future technologies.

36 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

Future Possibilities out of Problems : The Limitations of the
Exhibition Space and towards an Internet Version

The age is over when users gratefully reaed the outlines of aworld of vaue redized in
cyberspace by expensve computers. Within the next ten years computers will cost the
same or less than a telephone. The question is how much resistance and credtivity we
can bring to bear on the future which this technology will bring.

When a certain car company asked a group of elementary school students how
they imagined the cars of the future one of them asked why car steering whedls were
not like the joystick of a Nintendo game. This question shows that for this child the
interface with the world is best exemplified by the interface of a computer game. At the
sametime it suggests that anything can serve as an interface for controlling the world as
long as it is sandardized. But the mode of manipulation will change as the interface
does and of course with that there will aso be changes in the types of objects which
are esdes to manipulate. Ultimately this will mean a change in the way we see the
world.

In this sense Nuzzle Afar is beset with a certain dilemma. One purpose cetainly is
to familiarize the users with specific and entirdly new experiences and new ways of
viewing the world (and communicationg within it). It was designed out of a desire to
complete those experiences and world views as extensons of the framework of
conventiond art. But in order to completdly fulfill this dedre it is dear that the
environment of the user itself mugt be transformed as well.

Place - A User's Manual

Adolf Matthias, ZKM

The following sections provide an overview of the technical components involved in
Jeffrey Shaw's Place - A User's Manual. It aso gives a short but complete description
of the compensation of the cylindrica projection distortion that was used for Place.

Overview

Place congsts of a cylindrica projection screen of approx. 9 m in diameter thet is
gpprox. 2.6 m high. In the centre of this screen, a motor-driven rotating platform
carries the graphics computer, the image projector, a modified video camera with an
LCD viewer and a microphone mounted on a camera stand, and the viewer.

September 1999 37

eSCAPE eSCAPE systems, infrastructures and techniques

Graphics Rendering

The Virtual World

The virtud world of Place congds of an infinitely replicated Kabadah ‘Tree of Life
diagram on the ground plane onto which cylindrica objects textured with panorama
photographs are placed.

Triggered by sound events, three-dimensiond capitdl letters flow into the scene.
They remain within a circular environment around the viewer, and dart to fade and
findly vanish after a certain time. A dloudy sky spans over the whole scene.

Wide Angle Projection

The two verdons of projection sysems used in different versons of Place are
described here. The location of their respective projection origin that is relevant to the
distortion considerations below is discussed here,

Multiple Projectors

In order to provide a very wide angle section of the full 360°, a verson of the
projection system uses 3 projectors placed on a table on the rotating platform. The
distance between the perspective and the projection origin sems from the sze of the
projectors, their centres being approx. 30 cm to 50 cm from the projection screen's
centre and approx. 40 cm below the vertical centre. The two outer projector's optical
axes are not radidl.

Single Projector with a Mirror

A new generdion of light-intensve projectors made it possible to use only one
projector. The width of the projection sector is increased by using a large mirror in
order to lengthen the virtual distance between projection origin and screen. The
projector is placed near the front edge of the platform and projects backward onto the
mirror that is behind the platform's centre. The virtud postion of the projector thus is
approx. 1.5 m behind the centre of the cylindrica screen, and approx. 60 cm below
the centre. The projection is radid when seen from the top but is dightly inclined
upward.

Distortion

The optic digortion resulting from the projection onto a cylindricd surface is
compensated by a dynamicaly computed counter/distortion of the 3D objects prior to
rendering.

The badic ideais that when viewer and projection origin are in one point, the shape
of the projection surface doesn't matter at al, whereas a given distance vector between
viewer and projection origin results into a noticeable ditortion of the projected image.

38 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

As in dl popular panoramic paintings, the origin of the viewer's perspective is
assumed to be at the center of the cylindrica screen. The projection origin isthe optica
centre of a projector placed ingde the cylindrical screen.

What the viewer expects to see of a point in space is the intersection of the line
from the viewing point to that point. The projector has to illuminate that intersection
point on the screen in order to render the desired point in space which it wouldnt if
things were not corrected.

In the current verson of Place, the correction is done by replacing the point X
with X(according to

with

-

IS the viewer origin, the projector's origin, and r the radius of the cylindrica projection
surface. | | here denotes the orthogonal distance to the projection cylinder’ s axis.

It should be noted that this distortion has to be gpplied after linear transformations
of the scene or the camera point have been carried out. In order to reduce the
computational load associated with full 3D transformations, Place uses only rotations
within the plane represented as multiplications with complex numbers of absolute vaue

The entire distortion process gpplied to vertices of the scene is a combination of
this geometric transformation with the process described above.

As shown in the dataflow schematic, Place uses one andogue and four digital
inputs that are connected to the platform controller, a computer that aso provides
control sgnasfor the platform rotation motors:

An andogue input for the rotation angle of the camera stand that is used to control
the platform rotation and, coupled to it, the viewer's rotation in the scene.

A digitd input that is activated when the camera microphone is exposed to sound
above a specified threshold; this input triggers the flow of text appearing in front of
the viewpoaint.

Three digitd inputs connected to pushbuttons. Two of these are used to control
forward and backward travel within the scene, and the third one causes ajump of
the viewer into the center of one of the cylindrical panoramas once it has been
entered.

The platform controller transmits the state of its andogue and digita inputs to the
graphics computer through a serid interface.

September 1999 39

eSCAPE eSCAPE systems, infrastructures and techniques

The Web Planetarium in the EVE dome

Detlev Schwabe (ZKM) & Marten Stenius (SICS)

The Extended Virtua Environment EVE, is aunique implementation of a‘window-into-
aworld paradigm. An inhabitable three-quarters of a sphere projection dome contains
a rotatable stereo-projection device in the center. An observer, sanding inside the
dome, is able to look everywhere onto the surface and the projected images will follow
the motions of his head and will dways be centred according to his line of sght. This
paper describes the merging of EVE and The Web Planetarium. We will discuss design
issues, choices and some initia observations made during set-up and use in public
during exhibitions.

Figure 20: A schematic view of the EVE dome showing it immersed inside a virtual world

Although EVE is not meant to be a replacement for a CAVE (Cruz-Neiraet a, 1993),
it can be aless cost-intensve dternative, especidly if larger audience groups of 40-50
people are targeted. While it currently cannot compete with the immersiveness of afour
or even sx-sded CAVE, the specid ‘window’ paradigm has an gppeding qudity of
it's own, which can be exploited by gpplications as will be shown with the Web
Planetarium. The EVE was origindly desgned and built for the firg time in 1993. One
of the serious drawbacks of the origina projection systiem and the related tracking
sysem was the latency between the controlling user’'s head and the motion of the
motor-controlled projection head. In this paper we describe the redesigned pan & tilt
head as well asthe new approach for the tracking of the user’s head.

The next sections give atechnica description of the EVE, followed by a section on
the Web Planetarium ncluding a discusson on a range of technica and conceptua
design issues.

40 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

Technical Description

EVE is a sphere-like projection dome with a diameter of 12 meters and a height of 9
meters made of <oft, inflatable fabric. A congant ar supply is responsble for
maintaining the dome's shape. The inner part of the skin is used as the projection
surface. A rotating door entrance prevents the air from escaping outside.

In the origind sat-up, a magnetic head tracker was used to detect the current
orientation of the user’s head. Beside the fact that there was dways a cable going from
the user’s head to a computer a the centre of the dome, the significant problem was
the latency between the dmost immediate update of the shown imagery and the much
dower actud repostioning of the projectors. One would have to smulate the
accderation and decderation of the motors in software to improve the spatia
synchronisation between the podtion of the projection and the shown virtud scenery.
To overcome this problem, a new approach to the tracking was chosen. This chapter
describes the central redesigned hardware and software components.

Pan & Tilt Head

The centra part of the EVE dome is a stereo-video projection apparatus which can be
rotated motor-controlled by 360 degrees around the verticd axis and has a rotation
range from approx. —15 degrees (pointing dightly downwards) to 90 degrees (pointing
sraight up) about the horizontd axis. The projection head is mounted on a tripod so
that the centre of the projection coincides with the centre of the sphere. The projectors
(two Synelec LightMaster (http://mww.synelec.com)) utilisng Texas Ingruments DLP
technology (http:/mww.ti.convdlp)) support a 800 by 600 pixel resolution and have a
wide angle lense providing a 60 degree horizonta projection angle. Linear polarised
filters are mounted in front of the lenses to separate the stereo images. An audio
Spesker system with four mid-range speskersis adso built into the head. In conjunction
with a sub-woofer system at the basement of the tripod, a good sound system is
avalable. All necessary sgnasfor RGB video, power supply, audio, motor control and
serid linesfor configuring the projectors are brought into the head viaa dip-ring unit.

The head autométicdly follows the movements of one visitor's head who carries
gpoecid polarised glasses with a mounted infrared light pointer. The infrared light oot
on the dome surface is tracked by an infrared camera, a'so mounted inside the head.
The camera image is analysed by tracking software, running on a PC which isingaled
in the basement of the tripod. The tracking software determines the position of the light
spot in reation to the centre of the camera image (which coincides with the centre of
the projected images) and caculates acceleration and deceleration values which are
sent to the servo amplifiers via a serid controller. As a consequence the tracking
software controls the motors for the horizontal and vertical motion of the head so that
the center of the projected images are coinciding with the viewing direction of the
vigtor.

September 1999 41

eSCAPE eSCAPE systems, infrastructures and techniques

Norionral
ety

— vt ovis

g ping
- Siprings

- fripaed

Figure 21: The pan & tilt projection head

Application Interface

Currently the application interface congsts of a smdl circuitry board which interfaces
the two angle sensors of the pan & tilt head as well as a 5-channd wirdess joystick
with the RS-232 serid port on the application machine. A shared-memory-based API
serves as the software interface between the actua application and the state of the pan
& tilt head and the joystick. A background process running on the application platform,
continuoudly reads the current status of the angle sensors and joystick and writes these
vaues into a shared memory buffer. An gpplication connects to the shared memory

area a& program start and is then able to access the current values a any time.

Additiondly, the EVE APl aso provides a smple event queue for the 10 possible
joystick events (5 buttons can be pushed or released) for the application programmers
convenience.

Interface

To measure the current orientation of the pan & tilt head, two absolute angle sensors,
each with a 12-bit resolution are built into the head. For mechanica reasons both
sensors are ingtalled and digned to the verticd rotation axis. As a conseguence one
sensor actudly measures the sum of the horizonta and the verticd angle, while the
other ddliversthe vaue for only the horizontal angle. The vertica angle is determined by
subtracting the latter from the fir, regarding the possible overflow due to the 12-hit
limit. To read out the current vaue of the sensor device, the interface transmits a pulsed
sgnal to each sensor in order to receive the vaue bit by hbit..

42 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

The wirdess joystick is a standard PC game joystick, reconstructed for wireless
connection, with an integrated thumb knob, one fire trigger and three generic buttons of
which one is not activated. A dedicated radio receiver is able to receive five different
functions from the joystick which are used as forwards and backwards on the thumb
knob, the fire trigger and two of the buttons. The circuitry is responsible to read out the
datus of the angle sensors as well as the joystick receiver. Then it sends a complete
data block to the application platform over the serid port. The refresh rate lies a
aoproximately 40 fps, which is currently the limit at the used communication speed of
9600 baud.

Application Platform

Basically any computer hardware set-up which is capable of producing a synchronised
st of two 800 by 600 pixel resolution images can be used as the gpplication platform.
The current applications are running on a two-processor 150 MHz, R4400 Silicon
Graphics Onyx RedityEngine2 with a multi-channd option ingtdled. Out of the three
possible 800 by 600 pixd channels only two are used at the single available refresh
rate of 60 Hz. In order to use the multi-channd option, the frame buffer must be
configured to 2400 by 600 pixels (3 times 800 by 600). Since this resolution cannot be
shown on a regular 19" monitor, a VT320 termind is connected to the machine for
adminigration and control puposes.

To be able to sdlect and start different gpplications from insde the dome, asmple
goplication chooser utility has been implemented which is fully controllable with the
wireless joystick. A configuration file is used to define which gpplications are available
and how they are garted. With the thumb knob one can move through the ligt of
gpplications and can dart one by pressng one of the buttons. By convention dl
gpplications must be able to be terminated by pressing the fire trigger and the other two
buttons smultaneoudly.

The Web Planetarium

The Web Planetarium was originaly developed at SICS (http://www.Sics.se) as a
desktop gpplication and was implemented using the digtributed virtuad environment
software platform DIVE (Frécon, 1998; Hagsand, 1996). The gpplication visudises
the structure behind World Wide Web documents and hyperlinks asa 3D virtua world
of planet-like abgtract objects and connection beams, and elaborates on concepts
introduced in WWW3D (Snowdon et a, 1996). An object isa 3D representation of a
corresponding web page and, once the user is ingde, displays the hyperlinks on that
page as additiona small objects on which the user is able to click in order to fetch new
pages, and thus extend the 3D graph with new site representations.

Visual Appearance

In the Web Manetarium, the am has been to exploit enhancements of the visud
gppearance to improve the navigability and overdl user experience. The externd

September 1999 43

eSCAPE eSCAPE systems, infrastructures and techniques

representations of a Ste are derived by mixing a basic atigticadly inspired shape with
textures from the underlying web page. This gives a visudly rich dectronic landscape
that is visudly gppeding, and thus suitable for a public exhibitionstyle display such as
the EVE, but a the same times helps navigation by presenting abstracted visua cues
that can used when navigating and finding away through the structure.

Figure 22: The left snapshot shows a view of several objects representing web pages while
the right one shows a view from the inside of one of the objects: Two tubular link objects at
the lower left as well as three image links can be seen. Also note the crosshair in the
middle of each image, which is the point of interaction.

Sonic Experience

Given the planetary- or observatory-like nature of the EVE dome, the Web
Planetarium is intended to exploit the metaphor of exploring ,,outer space® while
navigating the Web. To drengthen this experience, space-like sound effect has been
added as feedback on different events:
Following alink or zooming in to adte resultsin a ‘ take-off - like sound.

Entering a Ste produces an ‘opening’ or ‘tregpassing’ sound.

44 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies
- Clicking on icons produces a ‘tingling’ sound.

A vitd function of these sound effects is to improve the aesthetic experience, and
complex visud gppearance of the planetarium. Thus, rather than having one smple
sound effect for each of the categories listed above, the Web Planetarium has three
categories of sounds. The sounds within each category resemble each other, but vary
enough to produce an interesting soundscape. When, for ingtance, a link is followed, a
takeoff-gtyle sound will be played, but the exact qudity of the sound will vary from time
totime.

A Mix of Function and Experience

The working mix of variation and predictability that has been explored in the Web
Panetarium has shown to be wdl suited for the public exhibition settings in which the
Web Planetarium has been shown. This partly opposes traditiond design guiddinesfor
graphica user interfaces, where a very dgrict condgtency is typicaly promoted.
However such guiddines typicdly are worked out with workplace desktop settings in
mind. The Web Planetarium intently bresks this drict uniformity, and this has shown to
be gppropriate in an public museum setting such as the exhibition in the EVE dome,
where people not only expect function but also an experience.

Navigating the Landscape

The user is able to fredy navigate in 3D space, enter objects either manudly or
automaticdly by clicking on the object or on a connecting beam. By dlicking on a link
icon within a page, the user fetches new pages and is automatically transported to the
Ste representation of those pages once they are loaded from the Internet. A direct
point-and-click interface has been proven to work well with the EVE dome, and to
present an interface that is aimed a smplicity rather than sophisticated feetures, snce
the intended users of the ingtdlations are random passers by on an exhibition. The
whole gpplication is navigated and used only by looking in the desired direction,
moving backward and forward, or clicking on an object of interest.

Merging two user interface metaphors

The Web Planetarium gpplication isimplemented as a DIVE process, and uses EVE as
the digplay and interaction medium. To provide a workable merge between the two
systems, some fundamenta differences in the interaction methods had to be taken into
account and mapped correctly to produce a natura user nterface. This has been
achieved by developing a device driver that provides a mapping between the EVE
hardware and software setup and the interaction features of DIVE. The device driver is
relised as a DIVE plugin that connects to the EVE usng the EVE APl described
previoudy in this document.

September 1999 45

eSCAPE eSCAPE systems, infrastructures and techniques

In DIVE, the navigation in the environment is independent on the actud interaction
point used for interaction. This is typicdly facilitated by combining arrow keys and
mouse interaction on a desktop, or by using different buttons for different functions on
awand. In the EVE, the spatia navigation device is directly coupled to the rendering
point: That is, the rotation of the input device (the laser pointer) is controlling the
viewing angle of the scene display through the hardware setup. The joystick supplies no
rotationa information, but rather a number of buttons and digita directiona information.

Furthermore, the EVE dome is unique in its combination of very large display size
and spherical curvature, and completely different from previous display settings used
with DIVE (desktops, flat wal-mounted pands, HMD:s, CAVE-like setups, €tc). A
means had to be developed to let DIVE and the Web Planetarium be presented in the
EVE without the production of undesred visud artifacts and with a good stereo
rendering. Given these prerequisites, the mapping between the EVE interaction and
rendering devices and the DIVE interaction and event modd emphasises four key
subjects, which will be consdered in turn.

The point of interaction

The rigid coupling between viewing angle and pointer movement of the EVE has been
handled in DIVE by replacing the fredy movable focus ray with a crosshar, dways
centred in of the rendering window. This crosshair thus functions as the pint of
interaction and follows the line of gaze of the user naturally, since the rendering window
of the EVE is directly synchronised with the head movements of the (leading) viewer.

By using the set of buttons on the joystick more extengvely, it is possble to extend this
mapping to generate dl kinds of DIVE interactions (grasping, clicking, and dragging

objects). For the purpose of the Web Planetarium, only the clicking (selecting) signals
are generated.

The rotation and position of the avatar

The current EVE interface produces backward-forward signas, controlled by joystick
movement, while left-right sgnas currently are not transferred. By mapping the
backward-forward interactions directly to a backward-forward movement in the
current line of gaze, the user can navigate the DIVE space in dl three dimensions— left-
right and up-down rotations are taken from the viewing angle (head orientation) of the
user.

Observations made during the public showings reveded that most users tend to move
modly forward in the line of gaze. A possible reason for this could be thet there is a
tendency to move towards what you see, to look closer, rather then back out to get an
overview. Furthermore, the Web Planetarium aso has an interface that builds much
upon zooming in on what you see, rather then backing out. This inherent tendency of
the users moving forward, however, led unexpectedly to a spirdling upwards in the
scene. This phenomenon is atributed to the fact that a large part of the lower
hemisphere of the ,,rendering sphere” is inaccessble due to obvious limitations of the
panvtilt head and the floor in the dome. Even though it certainly is possble to look

46 eSCAPE Deliverable 5.1

Chapter Two Contributing Technologies

upwards and ,,back down*, this movement is unnatura enough to rardly be used, and
typicaly a guide had to resat the user position regularly when showing the ingdlation to
Inexperienced users.

Dynamic change of the eye separation

The user of the Web Planetarium typicdly navigates the visudisdion in two mgor
phases. Roaming the ‘space’, looking at the gaph of Stes and links to choose an
interesting Ste, and visiting a dte, sanding indde a Ste representation to look at its
contents and possibly for links to new sites. When roaming, the Site contents are hidden
indgde their planetary abdtractions, and when vigting a Ste, the outside space serves
only as a background and visua reference to the outside world.

While experimenting with the gpplication, and tuning the stereo rendering, it turned
out that while a good stereo effect was achieved in the rerrow space within a Site, the
same eye separation” would produce an dmogt flat experience when the user roams
the space. Conversely, an eye separation suited for a good stereo separation when
viewing the overdl scene would yidd far too extreme results when viewing objects a a
closer distance insde a ste. This problem, of course, arises from the broad range of
scde in sze presented in the Web Planetarium visudisation: The scene graph is
typically presented with Sites separated by tens or hundreds of virtua meters, while the
dte contents are on the scale of meters or fractions of meters, dl within the same
Euclidean space. To overcome this problem, and give an acceptable stereo rendering,
two solutions were considered:

1. Keep the eye separation congtant, but dlow for a difference in distance scade
between different regions of the visudisation.

2. Keep the overd| uniform distance scale, but change the eye separation according
to where you are in the visudisation.

The solution chosen was the second one, since in the Web Planetarium it is easy to
implement by smply modifying the sate of the avatar when it crosses the border
between the internad and externd side of a Ste representation. However, a more
generd solution would be to apply scaling factors to regions of a virtua pace, an
architectural issue that was beyond the immediate scope of this experiment. However,
given such schemes, the Web Planetarium could be a good example of applied use.

Support for the EVE image warping

The curved surface of the EVE puts specid demands on the rendering to produce an
distortion-free image (see previous discusson). The implementation for other
goplications in EVE to do this image warping makes use of the texture memory of the
workgtation. This, however, is not readily possble to do with DIVE, snce DIVE

! Stereoscopic rendering in DIVE is fine-tuned by altering the eye separation of the avatar.

September 1999 a7

eSCAPE eSCAPE systems, infrastructures and techniques

renders textured 3D worlds in red time, and thus dready uses the texture memory.
This could potentialy be solved by letting DIVE render into some temporary buffer
rather than into the frame buffer, but in the current implementation the DIVE rendering
isunwarped. Given the rdaively smdl fied of view, the distortions are smal enough to
dlow for an acceptable visud experience, but rectifying this neverthdess is a potentid
future extenson of the interface.

Acknowledgements

Acknowledgements go to Jeffrey Shaw who envisoned the origind EVE idea and the
IC_inema and rePLACEd applications, to Armin Steinke who designed and built the
new pan & tilt head, to Raph Kondziella who programmed the tracking and motor-
control software, to André Bernhard who designed and constructed the interface card
for the angle sensors and the wirdess joystick. For the Web Planetarium,
acknowledgements go to Lennart Fahlén who has been a driving force behind the
whole application concept, to Bino Nord who provided the graphica design of it, to
Jonas Soderberg for the soundscape, and to Anders Wallberg for invauable help with
the software devel opment

48 eSCAPE Deliverable 5.1

Section Two
The technology of the abstract electronic

landscape

Chapter3
Q-PIT and Dataclouds: the generative
algorithms

John Mariani and Andy Colebourne
Lancaster University

The abstract landscape of the Virtual Planetarium/Library demonstrator is generated by a
combination of data-placement routines which organise the virtual world in meaningful groups,
and ‘hulling’ algorithms that highlight these regions to the inhabitants. In this chapter we
describe in detail the techniques that generate this virtual environment.

Generating the Q-space

There are 6 broad stepsin generating anew Q- Space containing data clouds

1. Generaing a Benediktine space for initid "random™ postioning of points within
the space.

Generating a gmilarity matrix

Generating the minima gpanning tree

|dentifying regions within the tree

Applying aforce displacement agorithm

Generating the data clouds

o 0k~ WD

Benediktine starting point

This was the basis for the organisation of the Q-Spaceinthe origind Q-PIT system. In
order to map N-dimensond data onto a 3-dimensiond display space, we consder the
values of a tuple as co-ordinates within the space. Three of these vaues are mapped
directly onto (x,y,z) postiona co-ordinates (extringc dimensons), and others are
mapped onto appearance of the object's representation (intrinsgic dimensions).

Thisis done by processng the contents of a single relation database (the Q-PIT
‘relation’) and extracting ordered ligts of the domain values. Some of these are mapped
directly onto numerica vaues (the index of the fidd within the ordered domain), and
some onto appearance or behaviour (in earlier prototypes, the ‘spin speed’ of an
object would be dictated by the underlying fidd vaue).

September 1999 51

eSCAPE

eSCAPE systems, infrastructures and techniques

These mappings are specified by a user-supplied ‘magpping fileé which identifies
which fields are contributing to the intringc and extrinsic dimensions. Where shapes are
used, the user has to state which field is being employed, and a list of (vaue, shape)

pars.

extrinsic
extrinsic
extrinsic

intrinsic

i sbn x
aut hor vy
title z

type shape "oversi zed book" cube book sphere

On dtart-up, Q-PIT processes the domain information and the mapping file to
produce a set of (x,y,z, shape) co-ordinates which it now stores persgtently within the
so-caled Q-PIT ‘rdation’. These points can then be plotted within the Q-Space as a
kind of ‘random’ gtarting position before the gpplication of the FDP dgorithm.

SLIDAELEX

SCCIALSEM

o -'.T.»"..Ll: ADP EARHD

L DOHMA_ ®

e o SGEN
GOFTHARE L o

SOFTWARES

DEVELOFING

THE LORFOR

[ATAGTRLC

MDA FRINT
® MCRELAMEE.

THE _HISTOR CHLEE 54&;.
. el 1 DEN

POLITICS A (] .
T

iEnmEr SOF THARELR

PRORA ';'-”nm

€r

Figure 23; after the Benediktine process

Fgure 23 shows a sample Q- Space conssting of 23 books found as the result of a
keyword request of ‘ada’ on the library OPAC system. They are mapped out
according to our Benediktine approach.

Similarity Matrix

In response to the poor performance of the origina Benediktine Q-Space in terms of
semanticaly meaningful spaces, we decided to move towards a Smilarity-based layout

52

eSCAPE Deliverable 5.1

Chapter Three QPIT and Dataclouds

which should generate clear and meaningful regions, visudised as data clouds. The first
dep in generating the cloud- based Q- Spaceis the production of asmilarity matrix.

This is accomplished as follows : each tuple within the Q-PIT "rdaion” is
compared with each other, in order to produce a smilarity measure between 0 and 1.
Each measure is then recorded in the smilarity matrix. Unfortunately thisisan M * M
process.

The dngle smilarity measure is generated as follows : each fidld of a tuple is
compared with the corresponding field of another tuple. This comparison is based on
the ordered domain lists generated as part of the Benediktine process. The absolute
distance between two vaues is based on their position within the domain list.

Fm : field measure

Nvd : number of valuesin the domain

D : absolute distance between the two values within the two tuples
Fm = (nvd-d)/nvd

To try to speed up this process, the Q-PIT ‘relation’ now stores the mapped val ues for
each field so that we only cdculate this once and do not need to perform a ‘domain
lookup' for each field in each tuple over and over again.

The tuple amilarity messure is generated by summing the individud field measures
and dividing by the number of fidds.

User-specified weightings

At this phase of the processing we can add some user-specified influence over the
generation of the cloud Q space. When we generate an individua field measure, we
can multiply it by some user-specified factor. This means we can decide which fidds
are more or less important than others when it comes to generating the Q-space. For
example, in the Flm Finders Q-PIT, we might decide we are more interested in genre
and a particular actor than we are in actress or director. In the Library Q-PIT we might
decide that I1SBNs have no semantic meaning whatsoever and that they shouldn't
influence the smilarity measure at dl, SO we can associate a zero factor with that field.

This is currently undertaken Steticaly, via the Benediktine mapping file. The user
can provide a lig of (field, factor) pars. If afied isn't named, the factor is 1 (one). In
future developments, we intend to provide a st of dider controls ranging from (0.0 to
10) to dlow more dynamic specification of these weighting. This would be associated
with an animated display of the Q-space taking up its new configuration. (Clearly, by
changing the amilarity weghtings we must begin the Q- space generation process amost
from square one. However, dl the points in the space would aready be present within
the visudisation and would be moved -- in an animated fashion -- to their new

positions).

|extrinsic i sbn x

September 1999 53

eSCAPE eSCAPE systems, infrastructures and techniques

extrinsic author y
extrinsic title z
simlarity author 3
simlarity isbn 0.1
simlarity classmark 10

Figure 24: revised mapping file

Minimal Spanning Tree

The next step in the processis to generate aminimal gpanning tree (MST). This begins
by converting the entire Smilarity matrix into an equivadent graph. An edge in this graph
congsts of a (u node, v node, weighting) triple. This set of edgesis then sorted in order
of descending weight.

The implementation is based on Kruska's agorithm as described in [Weiss 93].
The dgorithm consders the set of edgesto be aforest of trees. This meansinitidly each
edge isa single tree. When we add an edge to the MST, we are merging two trees into
one. The agorithm terminates when there is only one tree (thisisthe MST). The core of
the dgorithm is in deciding whether an edge (u, v) should be accepted. It is actualy
quite Smple to make this determination.

Two vertices belong in the same et if they are connected in the current spanning
foredt. Initidly, each vertex isin itsown <. If u and v are in the same =, the edge is
rejected, because snce they are dready connected, adding (u, v) would form acycle.

Figure 25 shows the Q- Space now featuring the arcs of the MST.

Figure 25: visualising the arcs in the MST

54 eSCAPE Deliverable 5.1

Chapter Three QPIT and Dataclouds

Regions within the Tree

The next problem is to form regions within the data. Following the work of (Ingram,
95) we have used the agorithm employed in the LEADS system, that of (Zahn, 71).
Regions are represented as identified sub-graphs within the MST. Zahn's clugters are
produced by identifying and eiminating ‘inconsstent’ edges, defined as edges of the
gpanning tree whose vaues are sgnificantly greeter than the nearby edge vdues. We
can thus identify inconsistent edges by comparing each edge with its close neighbours.
One method of doing this is by finding the ratio of the length (or weighting) of the
current edge to the average of nearby edges. Associated with the agorithm is an
adjustable threshold leve; if this threshold is exceeded, then the edge is incondstent.
(Note that hereis another point where the user could influence the generation process).

Once these inconsistent edges have been removed from the edge st, the nodes of
the resultant isolated trees represent a cluster within the data. As Ingram points out, ‘the
advantages of this dgorithm are its obvious smplicity and the way that it forms clusters
on the bass of the dataitself, not requiring the number of clusters to be predetermined’.

To represent membership within a region, each region is consdered to fave a
unique colour. At this stage, we colour each point in the space accordingly. Points
which do not belong to a region (or rather, are the sole member of their own region)
reman white. In our example, there are three non-singleton regions, and these appear
as ydlow, blue and green.

SLIDAE LEX (@)

SOCIALSEM A3

GOFTwWA

SOFTWARE 513
s

DEVEL QPRI

BRI HEY (8)

F-:::LIT;E:,.E[E{:._,_'_.-. ocoellic ,u:.; @ .'

S gPOFTHARE R (17

Figure 26: showing region membership via colour

September 1999 55

eSCAPE eSCAPE systems, infrastructures and techniques

Force Directed Placement

The penultimate step in producing data clouds where closeness of points in the Q
pace have some underlying meaning is to apply a force directed placement agorithm
to map the paints in the space according to thelr pogtioning within the minima spanning
tree. In order to do s0, we have applied the agorithm published by (Fruchterman &
Reingold, 1991). The agorithm adapts Eadess spring-embedder model but has been
developed in andogy to forces in natural system—the nodes in the graph are connected
by springs but can be thought of as atoms within a gas whose motion is connected to
the current temperature of the gas. The idea is that initidly displacements can be quite
large but as the "temperature’ coals the displacements gradudly become smdler until
the nodes approach a stationary date.

The dgorithm runs as follows: for a number of iterations, we cadculate the repulsve
forces, then the attractive forces, and findly limit the maximum displacement according
to the current temperature and to keep the points within the display frame.

Each vertex has two vectors—pos (position) and disp (displacement). To generate
the repulsive force, each vector is compared with every other, and we caculate the
displacement of a vector relative to the other. These displacements are Smply summed
to arrive at an overd| displacement for a vertex with respect to dl other vertices.

To generate he attractive force, we compare each vertex with every attached
vertex and again cdculate the displacement. As before, these are summed into the
overdl displacement.

Finaly, with respect to display frame and current temperature, we actualy apply
the digplacement and change the pogition of the vertex.

The adgorithm can be parameterised to some extend as we need to provide three
functions that will directly affect the displacements:

A cooling function that dictates how the temperature changes

An atraction function which forms part of the attractive force caculation
A repulson function which forms part of the repulsve force caculation

56 eSCAPE Deliverable 5.1

Chapter Three QPIT and Dataclouds

PROCRAMM MG

8

SOFTUARE 5
DATASTRLE (8
[.
g
SOF Ty
ECIENTIFICA

o
INTER-AGEN (1!

LITICS. A

- MELLA 172
®

Figure 27: after FDP

Figure 27 shows the graph after FDP. It should be clear that those points which share
region membership are now co-located in the space. Mogt of the Ada programming
language books reside within the green region, with links to two specific programming
books forming the smdl ydlow region.

Conclusions

In this chapter, we have described 5 of the mgjor processing steps which go from a
Q-PIT ‘relation’ to generating a clouds-based Q-space. The steps dternate (to some
extent) between data-based processing to display-based concerns. The generation of
the amilarity matrix, minima spanning tree and region identification are dl independent
of the display and are based purely on the data. The FDP and cloud display processes,
the two find steps, are display-based.

September 1999 57

eSCAPE eSCAPE systems, infrastructures and techniques

PROCRAMMIN)

&

FROCRAMHIN {181

Q.

B
INTER-ACEN (|40 DERINATIG

Figure 28: after hull-based clouds have been added

The initid Benediktine step however involves both data and display. The resultant
display may not drictly spesking be necessary—it now serves dmost as a random
pogtioning of the points involved in the space. However, the intrinsic (appearance)
mappings should gill be vaid. Furthermore, the generation of the ordered domains of
the QPIT ‘reation’, a data-based process, is used in connection with the smilarity
matrix process.

Construction of Data Clouds using Convex
Hulls

The congruction of the convex hull of afinite point set in a low-dimensiond Euclidean
gpaceis afundamental problem in computational geometry.

The convex hull of asat of points is defined as the smallest convex polyhedron that
contains agiven finite sat of points. Convex hulls can be cdculated for an arbitrary
number dimensions greater than one, but for our purposes, we are primarily interested
in three dimengons,

58 eSCAPE Deliverable 5.1

Chapter Three QPIT and Dataclouds

Figure 29: a set of random 3d points

Figure 31: a polygon convex hull around the random set of points.

Figure 31 shows a convex hull as polygons. It can be seen., from this figure and the
previous, that not al points are part of the hull and some are ‘hidden’ inside the shape.
Thisis exactly what we need for our purpose —asmplification and grouping of a set of
points or objects.

There are a number of agorithms that can be used to caculate convex hulls. For
our purposes, we chose a popular and well documented approach cdled ‘Gift
Wrapping'. The dgorithm, described as the Preparata and Hong agorithm in
(Edselbrunner, 1997), darts with a single face and repeatedly adds a face to the edge
of aprevious face.

September 1999 59

eSCAPE eSCAPE systems, infrastructures and techniques

The Gift wrapping dgorithm is a standard procedure for caculating convex hulls. It
is one of the amplest of the many convex-hull. A basic overview of how isworks is
shown here:

1.Find apoint thet lies a an extreme of the set of points

2.Find another point close to the other which is also at some extreme. Treat this as
the current ‘edge’ and is added to a data structure that stores edges remaining
to be processed. When thislist of edgesis exhaugted, the convex hull is done.

3.Using the current edge, reference another point (non-collinear with the edge
points) and use this ‘face’ to caculate the plane (the same as the triangle
formed by the three points).

4.Check each point n the data (excluding those currently used to cdculate the
plane) — if dl other points lie to one sde of the plane then the face being tested
isvdid and is added to the fina shape, then the other two edges of the face are
used as the current edge (goto 3) If dl points do not lie to one side of the
plane, thisfaceis not valid and the other points must be checked (goto 3)

The Algorithm in more Detail

DEFINITIONS

Point/vector - data Structure representing a position in 3d space (, Y, z floating
point numbers)

Plane - 2d flat surface described by a point on the surface

Normal - avector representing a direction perpendicular to a plane

Edge - aline segment connecting 2 points

Face plane - apolygon that lies on the surface of the hull. dl pointslie behind it.

ALGORITHM
Initialize: FacelList = enpty, EdgeStack = enpty
Find point E at sonme extrene (e.g. |owest y val ue)

Find point F e.g. second | owest y val ue
create edge EF fromthe two points

Pl ace edge EF onto EdgeStack

whi l e (EdgeStack is not enpty)
éet an edge fromthe EdgeStack, call this AB
r epeat

{

Choose a point C

60 eSCAPE Deliverable 5.1

Chapter Three QPIT and Dataclouds

Conmput e cross product NM= (A - B) x (C - B)
giving Mas the plane at B with nornal NM

for every other point (apart fromA, B and C)

{
cal cul ate the signed distance to the plane M
dist(P, M = (P- A * NM
and find the point P with the maxi mum di stance
}
}

until (dist(P, M <= 0) i.e. a valid face is found

if dist(P, M <= 0 then Mis a valid face plane

{
add face ABC to Faceli st

add edges CA and BC to the EdgeStack
}

Analysis

(Borgwardt, 97) gives a probabilistic andyss of a gift wrapping agorithm on random
input. It is claimed that for random input, redundant points (i.e. those which do not form
part of the convex hull skin) do not need to be removed by preprocessing. It is possible
that the data used to generate the cloud was not laid out in such a random fashion but
eg. inalineor a3d cuboid shape. In these cases, it may be more efficient to represent
the cloud' s group with amore smple shape. Possible problems with Dive include:

- If extradataisto be added to the cloud space, the cloud must be recalculated, a
cloud object remade and reloaded. Polygon objects in Dive are not dynamic i.e.
vertices cannot be easily moved.

Data removed from the cloud data only requires recdculation if that data lies on
the surface of the cloud.

September 1999 61

Chapter 4
The Java-Dive Interface

Marten Stenius and Jonathan Trevor
SICS, Lancagter University

This chapter describes the integration of the DIVE Virtual Reality system with the Java language.
The Java-Dive Interface (or JDI) was the first platform designed to allow Java applications to
create, change and manipulate objects maintained by the Dive system. The evolution of the JDI
into JIVE the more sophisticated interface layer that underpins the Library demonstrator
described in Deliverable 4.1.

The DCI

The DI rdies on the Dive Client Interface (DCI). This interface is provided by each
Dive dient (like the Vishnu interface) and made externdly available to any application
wanting to communicate with the Dive sysem. The DCI congds of a single socket
which listens on a specified port (defined in the clients configuration file) for remote
connections. Once a connection is established between the externd application and
Dive, plain text command strings can be sent from the remote gpplication which are
given to the Dive dients internd Tcl interpreter and executed. Any output from these
commands is returned via the same connection. In effect, any externa application
connecting to the DCI needs to understand how to formulate Tcl commands which
Dive understands (http://Mmwww.scsse/dive/manud/tclref.ntml). Examples of Td
commands which change Dive objects are shown in Figure 32.

Dive_dir_velocity [dive_self] {0 0| Make the object it is written in moving

0. 25} forward (i.e. dlong its Z axis) at a speed of
0.25m/s.

Di ve_materi al [dive_sel f] | Maketheobjectitiswrittenin red.

" RED_NEON_M'

dive_move [dive_self] 0 0 1.0 LOCAL_C | Move the object it is written in one meter
forward initslocal coordinate system.

Figure 32: Example Tcl commands for DIVE

Adding Java support for the DCI

The Java-Dive Interface (JDI) provides a st of Java classes that hide the socket
communications to the DCI and the congtruction of the Dive Tc commands from the

September 1999 63

eSCAPE eSCAPE systems, infrastructures and techniques

Java gpplication itsdf. The architecture is shown in Figure 33. The JDI classesrunin a
separate process from the Dive client (which provides the DCI interface itsdlf). The
Java application creates a JDI connection by ingtantiating a specia connection object in
the JDI which connects to the remote Dive client.

Process A

Java
application

Tcl/Tk

DCI interpreter

3!:) quld Dive Client
visualiser I

Dive infrastructure

Figure 33 : The JDI-DCI architecture

The Java application performs commands on the DCI through the JDI by caling
methods on instances of JDI objects. These JDI objects are organised into an object-
oriented hierarchy which mimics the Dive object modd, shown in Figure 34. Whenever
new instances of Dive objects are detected by the JDI interface a counterpart proxy
instance for the Dive object is created in the JDI. The Java gpplication then affects the
Dive object by invoking methods on these proxy instances. Each method is mapped
down to the underlying equivalent Td command on the Dive object and is sent across
the JDI-DCI connection and executed by the Dive dient. Any return vaues are sent
back to the JDI and re-interpreted into Java responses. For example, if a Java
application asks a proxy object for its current postion then the return value from Tdl is
a gring of three floating point values which are oace separated. This string is used to
congtruct anew ‘DivePoint” Java object instance before the result is passed back to the
gpplication, which can be used in subsequent cdls to other JDI objects and methods.

64 eSCAPE Deliverable 5.1

Chapter Four The Java-Dive Interface

__ DI VE_OBJ

| __ HOLDER --- WORLD
| /
DI VENODE--- LOD
! |\ __
[Bl LLBOARD
|

___ SWTCH

_ COLLECTION -- ACTOR

-~

PO NTSET

N_POLY

[
|
|
|
|
| | BOX
|
[
|
\

EW------ N_M POLY

[
[QUAD_GRI D

| ELLI PSE

[CYLI NDER

| TEXT_OBJ

SPHERE

Figure 34: The Dive object hierarchy

Message and error handling

The default DCI operates by accepting a string over the DCI port, passing the string to
the Tdl interpreter for execution, and returning any output from the intepreter back
across the DCI. There are several consequences of this setup which need addressing
for the JDI. Firgt, any errors which occur during the processing of the message are only
seen by the Tdl environment itself and are not returned by the norma DCI connection.
Secondly, the DCI dlient has no mechanism for detecting if commands which do not
normally result in any output have been executed. Findly, there is no supported form of
message ordering, or even any send-reply protocol - DCI clients send messages which
are executed by the Dive dient and any output from these is sent to any DCI clients
connected to the DCI port. The DCI client has no means of associating the incoming
text (from the DCI) responsesto particular previous commands that were sent.

To dleviate these problems a smple send-reply protocal is provided by the JDI.
When the JDI-DCI connection is first ediablished a specid Tcl procedure

September 1999 65

eSCAPE eSCAPE systems, infrastructures and techniques

‘java_execute is sent to Dive. The procedures code is interpreted and then can be
invoked in the the same manner as any other Td command across the DCI. All
subsequent commands sent by the JDI to the DCI are actudly passed to this Td
procedure for executing, rather than directly to the Tcl interpreter.

Incoming requests to the execute procedure contain a message ID, uniquey
identifying the request, and the command to be executed. After executing the
command, and trapping any errors, the procedure creates a response string which the
DCl automaticaly passes back aong the socket connection. Responses have three
fidds

Message ID — a smple number which identifies which request this is a response too
Success Flag — a boolean indicating if the request executing successfully or caused
aTd error

Resault — a text string with ether the error message (if an error occurred) or the
result of the request

This smple format alows the DCI client to match responses which come back from the
Dive DCI port to previous requests it sent (using the Message ID) and to see any
errors which occur during processing at the Dive clients Sde.

Executing a command through the JDI

To illustrate how the JDI and the DCI communicate consder the following example
where a Java gpplication wants to move an object in Dive forward by 3 metres. We
assume that the application and the JDI has dready obtained a proxy object ‘obj’ for
the Dive object. First the move method on a Java object is invoked by the application:

obj . move(new Di vePoint(3,0,0),” LOCAL_C’);

The method takes the various Java objects passed as parameters (in this example
an ingtance of DivePoint), and congtructs the an equivaent Td command which would
perform the same operation (providing its own Dive identifier for the operation):

di ve_nmove 3322:122:123:232 3 0 0 LOCAL_C

This Tcl command is then passed to the ‘ DCIConnection’ instance which ismantaining
the link between the JDI and the remote DCI client. The connection instance alocates a
new lightweight thread and a message ID for the command. A new request is
congtructed, containing this command, which will execute one of the specid Td
procedures which were firgt sent across the connection to the DCI:

java_execute 12123 “dive_npbve 3322:122:123:232 3 0 0 LOCAL_C’

66 eSCAPE Deliverable 5.1

Chapter Four The Java-Dive Interface

The command is sent across the socket and is executed by the Tcl procedure. In this
example no errors occur (i.e. the object exists and can be moved) and the DCI sends
the output of the Tcl procedure (the formatted response message) to connected DCI
clients (the JDI) (thereis no vaue returned by the move command):

12123 true

The JDI receives and decodes the message and matches the message ID in the
message againg a previoudy sent requedt. It wakes the requests lightweight thread
which has been waiting for the response to come back and returns the result (in this
case nothing) from the origind move method.

Constructing proxy objects

Thisisthe typica sequence of actions which occur for dmogt al requests to Java proxy
objectsin the JDI. The most significant specia case occurs when an object ID dring is
returned by the Tcl command, for example when the user areates a new object using
‘readURL’. When an ID dgiring is expected as a result from a command (such as
readURL), the Java method invokes a method in the connection class to return a Java
proxy instance for an object with this ID. If the object has dready been ‘proxied’ at the
JDI the connection ingtance will return a reference to the exigting instance. If no object
has been proxied yet, a new Java proxy object of the correct type is ingantiated and
returned.

JDI limitations

There are two main problems with the JDI. Firg, the performance of the JDI is only
redlly adequate to support periodic interactions with Dive but degrades very rapidly
with sustained and rgpid communication - especialy when the JDI has registered
severd frequently executed callbacks on objects in Dive (such as receiving an update
whenever an object moves).

Secondly, Dive makes heavy use a Gpreprocessor to anadyse and interpret the
text files and drings used to define Dive objects. Unfortunately neither the Tdl
environment provided by the DCI nor Javaitself has support for such a preprocessor
which means that object definitions or commands which rely on this mechanism cannot
be used over the JDI-DCI connection. As a consequence any commands or object
definitions used by the JDI must be carefully checked to ensure they do not contain
pre-processor directives, and where found, these directives need to be expanded by
hand.

September 1999 67

eSCAPE eSCAPE systems, infrastructures and techniques

From JDI to JIVE

In this section, we will describe Jve, the Java-DIVE native interface, which has
been implemented to function as a layer in the implementation of the Planetarium /
Library demongrator described in Deliverable 4.1. The motivation for implementing a
Jve was shortcomings of the previoudy exising JDI (Java-DIVE Interface), an
experimentd APl which was used with later versons of Q-PIT to enable Java
gpplications to present themsalvesin a DIVE environment.

Having considered the JDI, and described some of its shortcomings, we continue
here to discuss the prerequisites for usng Java on a deeper level within the eSCAPE
projects. This is followed by a short description of Java and JNI (Java Native
Interface) [Liang99], and describe how thisis used to redise Jve, a set of Java classes
that encapsulate the core DIVE AP in a package accessible by any Java programme.
Findly, some directions for the future are indicated, which includes a set of unsolved
Issues along with a description of some possible extensonsto Jve.

The implementation of Jive

We will here give atechnicd discusson on the implementation of Jve, darting with
an overview of possible gpproaches for the implementation, and a discusson on why
the current method was chosen. Then an outline of the basc sructure is given, with an
overview of the mgor components, an illugtration of how Jve gpplicationsinteract with
aDIVE world, and an introduction to how the fundamentd Jve classes (the DivelNative
package) are implemented. We round this section off by briefly mentioning some initia
experiences of the usage and performance.

Choosing an implementation strategy

The intention when implementing Jve was to provide a means for Java processes to
become full members of DIVE worlds. This means, on the network and database levd,
that a fully DIVE-compatible implementation is needed in the Java process. Two maor
gpproaches were possble when doing this DIVE-compatible implementation: To
completey re-implement the core DIVE libraries using Java, or to use the Java Native
Interface (INI) to wrap the core DIVE native librariesin Java.

A complete remplementation in Javawould possibly be the cleanest solution, Snce
no issues arigng from collisons between different threading systems would occur, and
no platform-dependent native libraries would be needed to run on a particular system
configuration. However, such a solution would on the source level be decoupled from
the main DIVE source tree, and any updates to the database and networking level to
DIVE would have to be done twice to retain compatibility: In the C source, and in the
Java source. To keep such implementations consistent in the long perspective becomes
cumbersome and with it follows a high risk of platform fragmentation.

68 eSCAPE Deliverable 5.1

Chapter Four The Java-Dive Interface

To use INI to wrap the core DIVE libraries in Java classes introduces some issues
regarding how to securdy wrgp the internd DIVE threading and communication
mechaniams in the Java thread modd, and how to do this while retaining the leve of
throughput in events and calbacks required by highly interactive gpplications. However,
the fundamenta requirement of full competibility with the DIVE protocal is easly met
snce the underlying core libraries being wrapped are identical to those used by
“slandard” native DIV E gpplications such as the default visudiser.

Given the above, it was decided to use NI — since the compatibility requirement
aong with the long-term maintenance issues was of criticad importance. Hopefully, the
threading and performance issues with this gpproach can be solved at an early stage.
Major components

Java application

Jive class hierarchy
(the DiveNative Java package)

Java L INI

DIVE core libraries

Figure 35: The fundamental layers of JIVE

Jve rdies on three layers The DIVE core libraries are identicd to the fundamenta
communications and database libraries of any native DIVE process. These
implemented in C and compiled specificaly for each platform, are provided with a set
of stub functions defined through the JNI (Java Native Interface) and thus possible to
cdl from the DiveCore Java class. Udng these native Java cdls, the Jive class
hierarchy is built up, to reflect the DIVE entity class hierarchy of the native C libraries.
(The DiveCore class and its relation to the other classes in the DiveNative package are
discussed in a separate section below). Findly, a Java application can make use of
the Jve classes to build shared virtuad environment applicationsin DIVE.

Jive and the distributed database of DIVE

Jve-enabled Java processes enjoy full access to dl entities present in the shared
digtributed database of DIVE worlds. Thisis achieved through a*shadowing” scheme,
where the digtributed DIVE object hierarchies are mirrored with proxies on the Java
gde, and events being trandated to ligener calbacks in a style reminiscent to the
mechanisms supported by the Java AWT (Abstract Windowing Toolikt) classes.

September 1999 69

eSCAPE eSCAPE systems, infrastructures and techniques

Java application Standard DIVE
using Jive application
DIVE core DIVE core
. . /\ . .
libraries libraries

DIVE network /
shared worlds

Figure 36: Jive gives a Java application full interactive access to shared DIVE worlds and
any applications connecting to them.

By fully incorporating the dive database and network layers (Figure 36), a Jive process
becomes a full member of any DIVE world it connects to.

This involves full support for diveserver and proxyserver connections, joining and
leaving world groups and light-weight groups, and recelving and sending of Sate
transfers and object updates and events. For afurther discussons of these concepts,
see for instance (Frécon, 98) or (Hagsand, 96).

Native distributed object Java-side shadow objects
hierarchy

| obi3 |<-- |.obja el id4

e

Figure 37 : The “real” objects residing in the distributed native object database are
represented by “shadow” objects (or proxies) on the Java side.

Since the database objects ill reside in the native layer of Jve/DIVE, and dl object
updates and requests over the network is handled on this level, only smple “shadow”

objects exist on the Java sde. To the Javaldive user, these serve as the access point for
interacting with the DIV E database, but they arein fact only “proxies’ used to relay any
field access or update down to the native layer (Figure 37).This means that little more
than the DIVE object ID is stored in the Java shadow. Any references to the actud

features of the object are directly down to native access functions through JNI.

70 eSCAPE Deliverable 5.1

Chapter Four The Java-Dive Interface

Thus, when some feature of an object is to be modified from the Java gpplication,
the user calls a method on the Java shadow object, which is directly implemented as a
native (JNI) method stub, which in turn repackages the cdl and furthers it to the core
DIVE library. Smilarly, when an update is received for an object, and an interest in
such events has been registered on the Java Sde, the event is repackaged on the native
Sde as a Java event object and delivered through the JNI to the Java-Sde registrant.

The shadow tree is continuoudy kept up to date with the “rea” DIVE database
through registering callbacks on any object additions and removals on the native level
and performing the corresponding actions on the Java sde. Conversaly, when an object
is crested on the Java Sde, its complete DIVE sructure is immediately built and
didtributed through the netive layers. A possible modification in the future to this scheme
could be to only Java-shadow those objects that actudly referred to from the Java
application, to reduce unnecessary object creations and overhead.

The DiveNative Java package

DIVE entity classes DiveNative class hierarchy
entity Di veEntity
di venode Di veNode
di ve_obj D ve(bj
hol der D veHol der
wor | d D veWr | d
col |l ection Di veCol | ecti on
act or Di veAct or
Vi ew D veVi ew
box Di veBox
sphere Di veSphere

Figure 38: The DIVE entity class hierarchy has in Jive been directly mapped to a set of
Java classes. (Simplified view)

The exigting structure of the DIVE database is based on a “pseudo-object-oriented”
approach, where object types inherit features according to the DIVE entity class
hierarchy (see further the technical documentation of DIVE). This approach lends itself
eadly to converson to the true object-orientation of the Java language, and this has
been done in Jve. In Figure 38, we illudrate this mapping between the native DIVE
entity types and corresponding Java classes.

This Java class hierarchy is mapped to underlying native DIVE cdls by associating
esch crested DiveEntity (or inheritant) to a DiveCore object, which should be
ingtanciated once per session. The DiveCore classis the class that actudly encapsulates
dl native cdls and the DiveEntity hierarchy thus has a purely semantic function, to
provide a more appeding Java APl than just straight mappings of the native DIVE
cdls.

September 1999 71

eSCAPE eSCAPE systems, infrastructures and techniques

DIVE events DiveNative events DiveNative listeners
ENTI TY_NEW EVENT Di veEnt i t yNewEvent Di veEntit yNewLi st ener
ACTOR_M GRATE_EVENT Di veAct or M gr at eEvent Di veAct or M gr at eLi st ener
| NTERACTI ON_EVENT Di vel nteracti onEvent Di vel nteracti onLi st ener
OBJ_COORD_EVENT Di veObj Coor dEvent Di veObj Coor dLi st ener

| MAGE_EVENT Di vel mageEvent Di vel magelLi st ener

Figure 39: Mapping of the native DIVE events to Java events and listeners

The callback-based event API of the exigting native DIV E has been mapped to Java by
following an gpproach smilar to the Java AWT. This means alowing the registration of
listeners on an object, which will get cdled when an event occurs, which will be
delivered as an event object encapsulating the details of the event (Figure 39)

As an example, an OBJ_COORD_EVENT is generated in the native layers for a
dive obj when it moves to a new podtion. This event corresponds to a
Di veObj Coor dEvent in Jve. If a Java gpplication wants to be notified when a
particular object has moved, it can thus register a Di veCbj Coor dLi st ener with
the desred Di veQbj . The ligener will then be cdled on a specific method and
supplied with Di veQbj Coor dEvent objects as the movements occur.

To dlow for regidration on all events of a particular type, rather than just the
events relating to specific objects, some events have been made available for listener
regigdration on the “globd” Di veCore object as wel. One such events is
Di veEnt i t yNew, which may be interesting to receive regardiess of prior knomedge
of aparticular object.

First experiences of use

The initid experiences from using Jve, in conjunction with interfacing the Java-based
Q-PIT database gpplication to DIVE, was that of numerous smdl glitches (easly fixed
bugs) and some important issues that need to be solved, however not al are critical for
the demongtrator to work well. Some of the non-critica issues are outlined in the next
section.

A criticd issue, however, was the overdl performance when handling large
numbers of event calbacks. This proved very dow, and the reason for this was that the
native thread and communications mechanisms were protected by one single, process-
wide monitor — meaning thet al events lined up in the same queue with savere lagsas a
result. A solution for thisis currently under development, it focuses on providing a per-
object monitoring scheme, in combination with the ability to lock the process for critical
tasks such as world connecting, date tranders, and the credtion of internd DIVE
threads.

72 eSCAPE Deliverable 5.1

Chapter Four The Java-Dive Interface

Outstanding issues

While the fundamenta parts of Jive has been implemented, and proved to be working —
abeit with a number of performance improvements needed — some issues remain to be
solved to promote a long-term generd use of Jve. In this section, we outline some
important issues such as how to incorporate the generd set of DIVE API modules and
support Tl scripting.

Incorporation of DIVE APl modules

The current implementation of Jve only incorporates the ‘core libraries of DIVE, that

is, the networking and distributed database levels with the fundamenta support for
event handling and mullti-user applications. This means the excluson of graphics and
audio rendering, and al modules.

The ‘complete’ DIVE package consdts of alarge set of modules that add higher-
level functiondity to the platform. Such higher-leve functiondity can be specific says of
handling interaction, different experimental semantics for specific gpplication settings,
and so on.

This means that the current indance of Jive gives full access on the interactive
database leve to a DIVE world, which is enough to write Java applications that creste
different types of interactive graphicd interfaces in DIVE worlds. Writing a Java- based
renderer should aso be possible (see below) by usng different Java technologies.
Doing the rendering (audio and graphics) completely on the Java sde rather than
through Java-wrapped DIVE classes may actudly be preferred, since Javaiis currently
ganing a large st of technologies for such presentation, in combination with generic
techniques for handling input devices.

However, the lack of support for the DIVE modules results in some limitations
when writing fully DIVE-capable Java gpplications. Of specific concern here is the
method interface and te Tcl/Tk behaviour module, as well as a set of modules for
import and export of various file formats for images and 3D modds. Also, arich st of
interaction devices are supported through modules (even though this type of support is
now moving to the use of the plugin interface ingtead; this will be reported in a
subsequent deliverable). We will now briefly discuss some of these issues, what need to
be done to incorporate such modules, and possible issues that can be foreseen to arise.

Extending the DiveNative package structure

The dgructure of the DiveNative package needs to be extended, and possibly
reconsidered, to seamlesdy and condstently support a set of dynamic modules. An
obvious solution for smpler modules is to isolate them in separate classes, but many
modules have more intricate relations to the core DIVE APl and need other types of
solutions.

September 1999 73

eSCAPE eSCAPE systems, infrastructures and techniques

The method interface module

The DIVE method interface module enables the generic atachment of scripting
interpreters to DIVE objects, thus making it possible to add complex object behaviour
languages without redesigning the complete DIVE core. (Thisis at least the intention,
however the current method interface implementation is tuned to work well with the
Tcl/Tk module described below, and may need some internd redesign to fully support
arbitrary languages).

This module adds features to the fundamental dive objects themsaves, and thus
would require additions to the actua DiveEntity class hierarchy on the Java Sde. To
develop some scheme that dlows this type of modular additions to the DiveEntity
hierarchy without the need to make module-specific changes directly to it would be
dedrablein this Stuation.

Another possibility could be to incorporate the method interface to the core DIVE
libraries, since this can today be seen as afundamenta feature, and not experimental as
it was when it was firg implemented many years ago. Such an incorporation would then
of course affect the implementation of the DiveEntity hierarchy accordingly.

The Tcl/Tk behaviour module

This module supplies Tcl/Tk behaviours for DIVE entities. Basicdly, each object is
supplied with a Td interpreter, which is enriched with a set of DIVE APl counterparts
in Tdl. This makes it possible to quickly write complex interactive behaviours for each
object. The Tcl/Tk module is designed to alow for seamless transfer of the evauation
of these scripts between the processes that take part in a DIVE world.

To alow Java processes and threads to house not only the inner workings of not
only the internd DIVE threading and networking mechanisms, but dso abitrary
numbers of Tcl interpreters with their own threads and widgets could, for lack of a
better word, be very hairy. Neverthdess, enabling this would result in very important
bendfits:
1.The ability to easily control Tcl-enabled objects and processes from Java.
2.The posshility of implementing ‘strong’ DIV E processes with Java, thét is, processes

that can be world servers and evauate any decentralised Tcl scripts.

To achieve this, however, the method interface must be carried over, and furthermore,
any potentid hurdles posad by introducing an dternative GUI mechaniam into the Java
process must be cleared.

Modules for interaction and devices

The Java platform currently incorporates severd technologies for complex interaction
devices. If a renderer is written using Java technologies, such modules may well
become obsolete, or at least better implemented directly in Java as well. Such purdy
Java-based methods should require little modifications to the core DIVE classes,

74 eSCAPE Deliverable 5.1

Chapter Four The Java-Dive Interface

except for making sure that the set of methods for the DiveEntity hierarchy is complete
enough to alow free experimentation.

Error reporting

A fundamental addition to the interface isto transfer the error return values of the native
DIVE library to the Java gpplication. This would be done by mapping error return

vaues of the native dive cals to the throwing of corresponding Java exceptions. A fird
sample DIVE exception class exigs in the old JDI, and this should be further built upon
when fully implementing the error reporting scheme.

DIVE configuration interface

DIVE features a configuration mechanism, which alows a st of configuration
parameters to be set viaa configure file or viathe graphica user interface. These values
can be read at gartup by the module that requires a particular setting, and calbacks
may aso be registered to alow for run-time updating of settings.

This configuration facility isincluded in the Jve native DIVE dasses, but only implicitly

in that the configuration files are read, and the native DIVE binaries get initiaised
accordingly. Currently, however, no Java AP is implemented in Jve to dlow the
reading and setting of configure variables from the Java Sde. This is a future extension
that would be sraightforward to implement, possibly in combination with a “listener-
syle’ interface for calbacks on changing parameters.

Object ownership

Within the COVEN project, a scheme for object ownership has been implemented in
DIVE: It is possible to set read and write accesses on a per-object basis, and to define
aDIVE actor as an owner of a particular object. It is aso possible to create groups of
actors with specific permissons for an object. This schemeis not currently interfaced in
Jve, dl objects created with Jive get a “null” owner, and any attempted actions on
objects made by a Jve process have a “null” actor as source. This default behaviour
means that unless an object is explicitly protected by someone, Jive will be able to
modify in and thus be able to co-exist with processes using the ownership facility. What
needs to be done to fully support object ownership in Jive is bascdly to define a
suitable API for setting and checking permissions, since the ownership functiondity &
such isdready present in the native libraries.

Bringing DIVE to the Java world

Among the many Java technologies and APIs available, some stand out as closaly
related to the fundamenta characterigtics of the DIVE plaform - collaboration in virtud
environments, dynamic networked environments, highly interactive and responsive

September 1999 75

eSCAPE eSCAPE systems, infrastructures and techniques

sysems. Of particular interest are Java3D and Jini, which would serve well as building
blocks for new interfaces. The implications of research related to these technologies
and why an integration or connection with the DIVE platform would be useful are
discussed below.

A Java3D Renderer

The Java3D technology (http://java.sun.com/marketing/collatera/3d_api.html) is amed
a providing Java gpplications with a unified AP for high-capacity 3D rendering. Thus,
by combining Java3D and the new DiveNative package, it would be possible to build a
new, completey Java-based DIVE renderer. Such a renderer would at the same time
have access to the full shared VE semantics provided by the DIVE platform asit would
benefit from the flexible, portable and well-structured programming Java environment.
This would both benefit the DIVE platform by taking it furher and onto new grounds, as
well as hdp leverage the Java3D dtandard by proving it useful and beneficid for a
mgor, genera-purpose shared virtud environment platform.

Some of the benefits for the DIVE platform, made accessble by the Java3D A,
are discussed below, and include portability, extendability, and increased access to
Java technologies.

Portability

Java, needless to say, is from the gtart intended to be platform-independent. Thus, a
DIVE renderer implemented in Java would inherently be ‘as portable as the Java
platform’ (given that the DiveNative classes have been ported to agiven platform, of
course - this goes for the Java3D APl aswell).

Extendability

The clean, object-oriented and modular structure of the Java language makes it smple
to write gpplications that are easy to extend with new functiondity as requirements
change and new ideas need to be explored. Furthermore, specific mechanisms, such as
the JavaBeans AP exigt to provide means for interconnecting different gpplications and
components of gpplications.

Access to wide set of tools and APIs

The Java platform has gained sgnificant ground in industry as a viable and generd-
purpose gpplication development platform. Many packages and APl standards have
been defined and will be readily accessible to a Java3D-based DIVE renderer. Among
these techologies are, just to mention afew:

JDBC (The Java Database Connectivity interface) - Enablesfurther exploration
of database related research such as collaborative data visudisation and navigation
in virtud environments.

76 eSCAPE Deliverable 5.1

Chapter Four The Java-Dive Interface

RMI (Remote Method Invocation) - Provides a door to new ways of digtributing
applications and objects.

Jini - discussed in more detall in the next chapter.

AWT (Abstract Windowing Toolkit) - The obvious candidate for providing the
2D GUI components of such arenderer.

JavaBeans - Could be used to package DIVE features as embeddable
components of other applications, or vice versa.

Java Sound - MIDI, etc.

Java Communications APl - Enables smple control of serid and padld
interaction and data collection devices.

Java Advanced Imaging - Provides tools for spohisticated image processing.
Java Jpeech - Offers access to speech-based interaction and outpuit.

Ad hoc CVEs using Jini

In generd, Jini will make it easy to let arbitrary devices integrate within a CVE. With
DIVE A device extended with Jni woud hook into a DIVE process and through that
get access of the DIVE database. These devices could range from smple mouses to
complex reactive environments. We would thus see a merging of ubiquitous
computationd, reactive environments and CVEs.

Interaction - Presentation

During our work with CSCW-tools in generd and specificaly with CVE's like DIVE
we have redised the importance of having a connection between physicd and virtud
environments. There are activities both within the physical and the virtua environment
that are essentid for the collaboration between people. Nothing redly exists completely
virtudly without beeing present in the physical world. Otherwise we would never be
able to perceive it. The DIVE database could be seen as a meta representation of the
virtud environment and its physica proximities, i.e. those physca places where
someone or something has entered the virtua space.

The connection between the physica and the virtud will be done through a number
of physca devices which address different physica attributes. Some are used for
visudisation, some for interaction, some for data retrievd, etc.

Visualisation and presentation

A number of different devices could be used to visudise the DIVE database. Today
most of the visudisation uses 3D graphics on ordinary desktop computers but future
presentation techniques can aso range from sound-only to text-only.

With Jini technology the DIVE processes will not need to know how to render the
database to present it for the user. That functiondity lieswithin the actud visualisation

September 1999 77

eSCAPE eSCAPE systems, infrastructures and techniques

device rather then in the DIVE-process and is transferred to the DIVE process when
the device wantsto visudise the CVE.

Avatar control devices, e.g. 3D mice, joysticks and trackers

During the last decade we have seen alarge number of different interaction devices for
computers, especidly for virtua environments. One problem related to these devicesis
how to communicate with them, but more important is the question on how the
movements and interactions should be interpreted and mapped into to the virtud
environment. With Jini, the device itsdf can contain the behaviours for, say, an avaar:
As a minimum it could include a set of standard behaviours dong with an Internet
address where more extended behaviours can be downloaded.

Personal artefacts - information containers

With persond digital assgtants (PDAS), people are carrying around persond
information in pocket-Szed computers, often fitted with different communication
technologies. Today, the common ways of exchanging information with others are
through connections that are explicitly set up by the users asthey are needed.

With CVEs the actua virtud environment ingead would act as a information
container, or virtua docking station, where documents and other information can be
shared or left for others to pick up. With Jni, it would be very easy for PDAS to
dynamicaly connect to the CVE and leave and retrieve information.

A complete Java rewrite of DIVE

A possible further development of Jve could be to reimplement the classes completely
in Java. This could resolve some issues arigng from the combination of different
threading systems (see above) as well as increase the performance, since the overhead
from INI and the complex locking mechanism could possibly be reduced.

Such a development might, however, de-couple Jni from the exiging DIVE if not
care is taken to ensure compatibility on the network / database level. This depends on
the technology chosen for digtribution.

78 eSCAPE Deliverable 5.1

Section Three
The technology of the physical electronic

landscape

Chapter 5
Generating Virtual Citieswith an
Algorithmic Approximation

Eduardo Hidalgo-Parras, Steve Pettifer and Adrian West
The Universty of Manchester

This chapter focuses on the design of an algorithm for the generation of virtual cities. We
examine in turn some urban theory as a background to the work, presenting the terms that will
be used in the algorithm developed herein, the ideal form of a city generation algorithm, and
consider practical variations, concluding with a presentation of an implemented algorithm and
future directions for this work.

Introduction

The City Generator Project is associated with the Cityscape/Tourist Information Centre
aspect of the eScape project where the intention is the creetion of virtud cityscapes as
socid environments. Such a cityscape environment requires severd components. the
cregtion of the physical layout of the cities, the creation of avatars that live in the city,
the implementation of efficient techniques for managing the environment, the insertion of
various users in the environment.

Here we concentrate on the congtruction of the cities themselves. Assuming that e-
scapes, being large scde shared virtud environments which provide connections
between and integrate other shared virtud environments, will not be built *by hand’, an
agorithmic approach to the design, development and maintenance is required (Bowers
& Pettifer, 1998). Some of the reasons that encourage the algorithmic approximation
are;

It helps with the management of the scale. The cities are too big for the user to
place dl the items contained in them manudly.

It dlows experimentation with multiple approximate desgns. By varying the
agorithm parameter values, interesting patterns can be sought in the cities.

The efficient transmisson of the virtud world. It is not necessary to tranamit the
entire world definition file. Only the agorithm with the parameter vaues that
generates a certain city is necessay.

September 1999 81

eSCAPE eSCAPE systems, infrastructures and techniques

Urban Planning Theories

For a better understanding of the decisons taken in the development of the current
project, it is intended to study some of the basic concepts of Urban Planning. This
chapter illugtrates these basic notions. Naturdly, for an exhaustive understanding of the
way that the cities are organised, a more complete study is necessary: however, thisis
not a detailed study of urbanism and we will limit ourselves to describing the only the
ideasthat are later used in the project.

Basic Concepts

A study of the Cultural Origins of Settlements isfound in Introduction to Urban
Planning (Catan, 1979). The human mind has a need to order the universe, and a
manifestation of thisis the ordering of the environment. All cultures have environmenta
ordering sysems. All environments have a meaning and communicate the schema,
priorities, preferences and culture of the creators. If we consider traditiond cultures,
there seem to be two mgor ordering systems. These are not mutudly exclusive; in fact,
they are often related. There is a geometric order, and an order related to socid
relationships. These two orderings systems are taken into account in the physica
planning of the cities.

A good definition of Physical Planning is the determination of the spatid
digtribution of human actions and conditions to achieve predetermined gods. The key
concept is the spatial distribution. All human actions and conditions are digtributed in
space: groups, culturd beiefs, buildings, vehicles and so on. Any of these variables can
be defined, observed, located and trandated into a map to show how they are
digtributed in space. But returning to the definition; what kinds of actions and conditions
are aidly digtributed? There are four types of variables whose spatia distribution are
manipulated in physcd plans: objects functions, activities and goals.

The spatid didribution of objects refers to item such as buildings, parks, trees,
roads, highways, sewer lines, etc... Spatidly distributed objects may be as smdl as
traffic dgnsand aslarge as airports.

The spatid didribution of functions is concerned with service functions provided
by locad government: police and fire protection, sanitation, services, utilities,
trangportation, education, etc... These are closdly related to the digtribution of objects
described above.

The gpatid digribution of activities relates to the regulatory and programming
activities of urban government. Regulatory refers to those governmenta activities that
restrict or require specific actions, while programming refersto activities that encourage
or promote specific actions. Examples of these are zoning (a city is divided into various
digtricts) or designating an area as a historic preservation digtrict.

The spatid didribution of gods encompasses a digtribution of objects, functions
and activities. Examples of this are neighbourhood improvement and economic
development.

82 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

Basic Patterns

Looking a an overdl view of any city, it is possble to see tha these cities have
common patterns that ae frequently repested. There are a lot of good books with
pictures of cities where these patterns appear (Ciucci, 1979; Kostof, 1991). The four
basic patterns that have been observed (Radio-concentric, rayonnant, chequered, and
diamond shaped) can be seenin Figure 40.

(a) radio-concentric {b) raycnnant

(¢) chequered (d) diamond shaped

Figure 40 : Basic Urban Patterns

Central Place Theory

Large centres (cities high in population and rich in services) tend to be distant from each
other in geographical space. Medium sized centres (towns with less population and
range of services) tend to be more proxima to each other, with villages continuing these
trends of association between size, population and range of services. In addition,

services tend to be found in a centre, which would justify the cost of travel to them for
the mgority of their potentia users. Thus, high vaue services tend to be found only in
cdties, mid-range in towns and cities, low vaue in villages, towns and cities. These
digributions of centres and alocation of services to centres could be based on retiond

economic principles (Bowers & Pettifer, 1998).

Spatial Interation Models

Spetid Interaction Models in geography offer ways of quantifying the amount of
interaction between centres, gven information about their population and separation.

September 1999 83

eSCAPE eSCAPE systems, infrastructures and techniques

Such modds can be usad to optimise the spatid digtribution of centres, given an
expected profile of interaction between them or set of population szes. The Spatia
Interaction Models emphasise the complementarity of centres (not al centres offer
exactly the same goods and services), and supply-demand reations come into
existence between them. Supply-demand relaions will be redised as movement and
exchange in great pat in rdation to the friction of distance (nearest sources are
preferred to more distant sources).

Towards a New Algorithm

We have introduced some concepts that will be used in the implementation of the
project. The theory about urban planning that was seen previoudy will be useful and
will guide the future decisons. Idedly, dl the sudied theory should be used, however
as the theory and such abstract concepts are so complex have made that the
implementation is only an gpproximetion to the theory.

Some of the theory concepts have been smplified because the exact
implementation of the concepts would have taken more time and the complexity would
have been bigger than it is. However, the underlying theory has been taken into account
in dl the implemented dgorithms and these agorithms generate structures that are a
faithful gpproximetion to redlity.

Next, we will illugtrate the cregtion of the generator. Firdly an idedl agorithm thet
includes dl the theory is given. But by the very complexity of such agorithm, it has been
impossible to implement it completely. Therefore, the parts of the agorithm, which have
not been implemented, will be pointed out. The implemented features and the used
techniques will be explained in great detall in this chapter.

The Ideal Algorithm

To develop afind dgorithm, dl the theory seen before will be consdered. The design
of the fina dgorithm is not an easy task because the terms introduced by the theory are
too complicated for the direct application on the dgorithm. Most of the terms need
some kind of Artificid Intelligence techniques or the intervention of a human operator.
So, remembering the theory, the god of the city could be the economic development.
However, creating a city whose digtribution achieves this god is not an essy task. Itis
obvious that it is impossible to solve a problem like this in a project of this duration.
Nevertheless, it would be interesting to design an agorithm in such a way that future
improvements can be made. The dgorithm shown in Fgure 41 ams to solve the
problem including dl the cited theory. It has been split up into five different and
independent processes as this facllitates the improvement of the fina result by
implementing or modifying any of these processes. These processes are connected and
when one of them is not implemented, the output is not taken into account by the
processes that useit.

84 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

Terrain Goals Functions Objects
Physical +
Parameters Activities

Main Public
Services
Emplacemen|

Didtricts

Terrain Main Streets . .
Main > Districts ~ [ggi%ith resrictio 3 Selectionand
Streets o | Selection » | Placement of
Generator gl P Services

ALGORITHM (Main Structure)

Physical
Terrain
Generator

Filling the
City with
Objects

Summary

_4> Input Parametersto the Algorithm

—> Output Generated by the Algorithm
(can be the input to other processes)

=

Figure 41: Structure of the City Generator

The Physical Terrain Generator process generates a physica environment where the
city will grow up. Usng a heavily parameterised process it would be possible to
generate different areas with different characteristics (lakes, mountains, coadts, rivers,
efc...). The generated terrain would impose restrictions and needs on the cities
(buildings never can be placed over a lake, a river impose the necessity of bridges,
etc...).

The Main Streets Generator process places the main means of communication.
This is probably one of the most important processes because looking &t red cities, the
digtribution of these means of communication are the first impresson that we get of a
aty.

The Districts Selection process takes into account the goas and activities of the
city. This process cregtes a series of didtricts in the cities and imposes redtrictions on
them. So, the sdlected didricts can be resdentia, commercid or industrid digtricts.
Possble redrictions include the maximum height of the buildings, the condruction
dengty and ‘green belt’ quantity.

The Selection and Placement of Services process locates the main public
svices in the city (hospitals, commercia centres, theatres, police dations,
supermarkets, etc..). Therefore, it takes the services needs of the city as parameters.

The Filling the City with Objects process places the rest of the buildings in the
city. These buildings are not important in the cities, but have aesthetic repercussions on
them.

It is important to emphasise the genera character of the organisation of the
agorithm. With this distribution of processes, it is possible to concentrate on a specific
characterigtic of the agorithm without repercussons on the others. In addition,

September 1999 85

eSCAPE eSCAPE systems, infrastructures and techniques

depending on the complexity imposed on each process, it is possible to move from
generding a city to trying to solve red problems in it. So, in the Selection and
Placement of Services, if atificid intelligence techniques are used, the agorithm could
seek the best placement of public services.

The Current Implementation

By the very complexity of the agorithm, it has been impossible to implement ether dl
the features or dl the processes. From the beginning, it was obvious that it would be
impossble to implement dl the processes. It was decided that only the most important
processes would be implemented. The Main Streets Generator was chosen because
the find appearance of the city depends on it. The District Selection process was
selected because it gives a big variety to the distribution and appearance of the cities.
Fndly, the Filling the City with Objects was sdected because its incluson is
absolutely necessary. Without it, the city would be empty, without buildings, trees,
etc...

The other two processes were not implemented for obvious reasons. The Physical
Terrain Generator was discarded because it is a very difficult process to implement
and because it imposes many regtrictions on the other processes. Not implementing this
process, the complexity of the whole project was consderably reduced and it was
possible to complete afind implementation. The Selection and Placement of Services
process was discarded because it has no visual repercussions. It is a process which is
hard to implement and it only has repercussions if the services are going to be used.
Taking into account that an editor was being implementing by ancther student, this
editor could be used to place the services manualy.

The final implementation uses these three processes, but they are didtributed over
two programs. The Drawstreets and the Makecity programs. The first programis used
to generate the means of communication and select the set of didricts. The second
program imposes the redtrictions on the digtricts and generates the objects in the cities.
The next sections will explain the way in which these programs have been developed

Drawing the streets

As mentioned previoudy, the Main Streets Generator is the process that has most
repercusson on the final gppearance of the cities. In an overview of the cities the main
sreets are the firgt recognisable features and so specid care must be given to them.
Unfortunately, the cregtion of an dgorithm that generates these streets properly is quite
complex. In order to generate credible structures the agorithm must have knowledge of
how the main Streets are ditributed in redl cities. Thisimpaoses the need of having some
kind of knowledge on the dgorithm and atificid intdligence techniques could be
needed.

Neverthdess, the fact that known structures exist in the cities Smplify the problem
subgtantialy. By using these dructures and giving the responghility of introducing the

86 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

dreets to the user, the problem can be solved eadlly. If this responsibility is delegated to
the user, appropriate tools must be developed to introduce the Streets easily. These
tools must enable the introduction of an entire city in afew minutes without much effort.

The problem has been solved using a street editor. The editor allows the creation of
complex cities usng primitives. These primitives are high level dreets patterns such as
the radio-concentric pattern, the grid pattern or the rayonnant pattern. Given that the
next process of the agorithm uses the output of the editor, it is necessary to trandate
between the format used by the editor and the format used by the program that fills the
digricts. Although the editor works with complex objects, the program that fills the
digtricts needs lists of crossroads, linear streets and didtricts. Moreover, when the
Streets are being edited, several kinds of inconsstencies can appear. Therefore, the
editor needs to check the streets and correct them when necessary.

The unique Streets that are needed are those that belong to adigtrict. The rest of the
dreets are not useful, and so they must be deleted. The program will check and delete
these dtreets in the smplification step. The techniques used to recognise these Streets
and the way used to smplify the streets will be explained later. In addition, the digtricts
must be extracted using the street information. The agorithm developed to solve this
will dso be explained later.

Introducing the streets

The introduction of the streetsis a vital task in the project because the final gppearance
of the city depends on it. So, the design and implementation of the editor has been
caried out with specid care. The C++ language was chosen because the object
oriented methodology is very useful for this gpplication. Severd kinds of street petterns
exig and it is very useful to work with dl of them in the same way. The object-oriented
programming fadlitates the incluson of dl these patterns in a hierarchy. In addition,
using these hierarchies it is very easy to add new patterns to the gpplication. Only OOP
techniques (Booch, 1996) and the features that C++ provides (Stroustrup, 1997) must
be used. Adding rew features to the existing patterns, it is possible to cregte a new
paternin jugt alittle time,

Therefore, the classes were designed in a way that helps with the creation of new
patterns. So, if someday new and more complex patterns are needed, it is possible to
extend the program with little effort. The patterns and the structure of the classes can be
seenin .

September 1999 87

eSCAPE

eSCAPE systems, infrastructures and techniques

v

CStreet

dselected
fmoving
srscaling
s#gridFactor
slineWidth
SdselectEpsilon
Exinit

Ewyinit

fawidth

fangle
fiselectionColor
fescaleColor
i¥streetColor

Estype

CRayonnantStreet

CRadioConcentricStreet

CGridStreet

#CRayonnantStreet()
#Display()
#SaveToFile()
%ReadFromFile()
f%Respond()
SGetMaxPoint()
FRespond()
FGetSegmentNumber()

AeringsNumber
AeringsList

#CRadioConcentricStreet()
®Display()
HGetMaxPoint()
ERegister()
EGetSegmentNumber()
SsaveToFile()
FreadFromFile()
FRespond()
j'SetRingsNumber()
fSetRingPosition()
®GetRingPosition()

szheight
saxWidthChequered

S2yWidthChequered

*CGridStreet()
fSaveToFile()
-“ReadFromFiIe()
®Display()
FRespond()
FGetMaxPoint()
FRegister()

#GetSegmentNumber()

E¥CalculateRingsPositions()

SCstreet()
EMove()
®Scale()
Sselect()
FDeselect()
FRespond()
?SetColor()
®Rotate()
®GetCenter()
®Display()
#saveToFile()
?ReadFromFile()
FGetMaxPaint()
*Register()
ESetWidth()
EGetwidth()
*GetCIassType()
FPrintClassName()
FnPosition()
®DrawControl()

Figure 42 : UML class relationships

In the gpplication, several patterns can overlap, leading to intersection points
between them. These points will be some of the crossroads in the cities and 0, it is
necessary to work out these points. The way used to solve the problem avoids having
to caculate whether intersections between pairs of patterns exist. This has been done
usng the gridedl dructure. Each primitive has to register the lines that create the
pattern. After that, by checking each point of the grid it is possible to know if thereisa
node. If two or more lines reach a given point then a node exigs. But this dgorithm is
very expensive, q(N?), N being the size of the grid. The technique used to avoid thisis
to traverse the grided| following the lines in a manner very smilar to the way in which a
greph is traversed. This dgorithm is more difficult to implement but the cost is reduced
to g(N), N being the number of pointsin the gridcell that belong to the graph.

88 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

Simplifying the graph

To amplify the graph determined by the street patterns, two tasks are necessary. The
fird is the sdlection of the red nodes and the edges of the graph. The second is to
delete the edges that do not belong to any digtrict. These two steps in the agorithm
generate a red graph that will be very useful in the future. A graph has been sought
because the graphs are a very useful representation for many agorithms. There are
graph theories that could be used for trying to get better algorithms.

The first step is carried out a the same time as the intersections are calculated.
Choosing the find nodes is not difficult. It is only necessary to check the directions of
the edges which arrive a a node. In the array that represents the grid, a byte is saved
with information of the edges that arrive there. In Figure 43 it is possible to see how the
edges are registered in the grid.

Inthisfigure it is possble to see that only one bit is needed to indicate if the edgein
adirection is present. As only eight directions are available, the space requirements are
very smdl and optimised dgorithms and structures can be implemented.

Width

+ﬂ\+/
YEEEEEEEN

Height

I,
|
IIIII
Y
L [X] X
x| X] [

Figure 43: Way in which the streets are registered in the grid.

In the smplification, it is necessary to identify the nodes that must be deleted because
they are part of an edge but are not crossroads. This is very easy to do. These nodes
have grade 2 (the sum of the edges that arrive a the node plus the edges that leave the
node) and have one of the following combinations of directions. North-South, East-
West, Northwest-Southeast or Northeast-Southwest. Figure 44a shows some
examples of nodes that must be smplified. Figure 44b shows examples of nodes that
are not smplified.

September 1999 89

eSCAPE eSCAPE systems, infrastructures and techniques

Figure 44: (a) nodes that will not be simplified, and (b) grade 2 nodes that will be simplified

After this fird amplification, the find nodes are obtained. To get the edges it is only
necessary to seeif two nodes are connected. Thisis done at the same time as the graph
Is being amplified. Having a node that is a find crossroad, its edges are traversed
following the directions. When a node that is a find crossroad is reached, the initid
node and this node creste a new edge. With the edges and nodes, the graph is
completely determined and the next step in the smplification is carried out.

For the purpose of the project, only the edges that are part of a cycle are used.
Thisis due to the fact that the buildings are only built ingde the didricts. A district must
be a closed area and therefore, the areas will be represented by means of cycles. The
last step in the smplification isto delete al the nodes and edges that do not belong to a
cycde Thisis recursvely done deleting al the nodes of grade 1 until there are no nodes
with grade 1. Thisis shown in the next figure.

Figure 45: Nodes of grade 1 that must be deleted. The edges are deleted with the nodes

After dl these steps, the graph is completdy smplified and it will be used to extract
useful information in it. The firg task to be done is the extraction of the didricts within
the graph. Thiswill be explained in the next section.

Obtaining the Districts
The task of getting the didricts included within the amplified graph is the same as

getting the minimum cydesin the graph. The following agorithm has been deve oped to
obtain the information in an efficient way: the edge that joins two nodes is taken.

90 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

(} .

Figure 46 : Traversing a graph

Given the input edge (i, i+1), in the i+1 node the edge (i+1,i+2) is sdlected. The edge
(i+1,i+2) is not selected in an arbitrary way. Always the edge thet is the first in a given
direction is dways sdlected.

selected edge

-n

{ M .\\

current edge

Figure 47 : an edge is selected

Using this dgorithm, if a minimum cycle exids, it is dways sdlected and it is recognised
because the initid nodeis visited again.

- -

Initial node

Figure 48: Recognition of a cycle by the initial node

This dgorithm ergbles the extraction of the minimum cycdle that departs from a given
node d and usng a given edge arives to the initid node. If this dgorithm is gpplied to
al the edges that have the node d astheinitid node, dl the minimum cycdeswhich have
the node d are included.

September 1999 91

eSCAPE eSCAPE systems, infrastructures and techniques

., cicled

~ -

Figure 49: Extraction of all the cycles that contain a given node

Now, if a Breadth-fira traversd of the graph is carried out, dl the minimum cydles of
the graph will be obtained. It is important to point out that repeated cycles are
obtained, and these repetitions must be recognised in order to preserve the correction
of the solution. In addition, usng Euler’s formula for the number of facesin a graph, the
number of exigting cycles can be found before sarting the search.

n-m+f =2

Where n= number of nodes, m= number of edges, and f= number of cycles.

This property dlows the abandonment of the traversing of the graph when the number
of cycdles is reached. In addition, by the way in which the graph is traversed it is
possble to detect if a graph is disconnected. Figure 50 shows an example of
disconnected graph. These kind of graphs are not of use for the program. It is
absolutely necessary that the graphs are connected and when an error Situation arises,
that it is detected.

subigrap 1
samiapl 2

Figure 50 : A disconnected graph

When dl the minimum cycles of the graph have been extracted, a new problem
agppears. Between dl of these cycles, the externd cycle is included. This cycle must be
discarded because it includes to dl the other cycles, and it is usdessin this context. The

92 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

agorithm chosen to find this cycle condsts of selecting a cycle and checking if dl the
nodes that do not belong to the cycle are included in the polygon represented by the
cycle (see Figure 51).

O Inlernal poinls

® External points

Figure 51: The external cycle

This basic dgorithm will be applied to dl the cydes until the externd cycle is found.
Thisis a dow process because for each cycle it is necessary to check the inclusion of
the rest of nodes. The agorithm that checksiif a point isincluded within a polygon is an
expensive dgorithm. So, a heuritic is used to accderate the search. Generdly, with the
kind of used graphs, the g/cle with the most nodes is the externd cycle. But, asit is
possible to see below, thisis not awaystrue.

cicle1 external cicle = 6 nodes

cicle 1 =12 nodes

cicle2 =15nodes

cicle2

Figure 52: The external cycle not always has more nodes

In this example, the externd cycle is the cycle that has fewer nodes, and is what
invaidates the previous heurigtic as generd rule. Neverthdess, if the heuridic is used, it
will guide the search of the externd cyde and in the mgority of the casesit will dlow
the desired cycle to be found as quickly as possible.

September 1999 93

eSCAPE eSCAPE systems, infrastructures and techniques

The Drawstreets program

The prototype methodology was chosen due to the little understanding of the problem.
The amdl knowledge in techniques for developing cityscapes and the smal amount of
documentation avallable enforced the development of nove techniques. The strong
probability that some of the techniques were wrong and that they invalidate the rest of
the project emphasised the need to split up the implementation into independent
programs. Three different programs were created for drawing the streets and obtaining
the didtricts. A dreets editor, the graph amplifier and the didtricts extractor. The first
implementations of these programs sought to acquire some kinds of structures in order
to carry out some experiments in the program which fills the digrict with buildings (this
was the least known task and it was necessary to investigate algorithms very early).
These firg implementations had a lot of errors and condraints, but facilitated the
developing of techniques to fill the digricts with dements. With this gpproximation, it
was possible to understand the algorithms that should be implemented. When the find
ideas of the implementation were found, a find and optimised implementation was
caried out. In the drawstreets program, the distribution of the programs was
maintained but better agorithms were used. Findly, an optimised implementation was
developed.

To make the program easy to use, dl these independent programs were joined in a
unique program. The find implementation is the Drawstr eets program.

[OBIECTS
L TEATURES

Figure 53: The Drawstreets program

This program has the common expected options. it is possible to introduce, move,
scae, delete and rotate patterns. It is possible to save and load the streets. Also a

94 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

commeand for exporting the dreets into the program that fills the didtricts exists. When
this option is sdlected, the program automatically smplifies and extracts the didtricts
included in the streets and saves them onto a file format useful for the other program.
For the coding of the program the C++ language, the STL library of C++ and the
OpenGL graphics library were used.

Filling the City With Objects

The next sep after the insertion of the main streets and its corresponding smplification
and digtricts extraction is the introduction of the eements of each didtrict. The output of
the program used to design the streets will be used as input for the program that
implements the next sep in the agorithm. Thisisthe step that has more repercussonsin
the physica appearance of the city because it is the part dedicated to transforming a
graph with connectivity information in a red city. This mugt be done by a program
automatically because it is atedious task and because the cities are too big for the user
to place dl the items contained in them manualy. Although the computer will do the
process, the user must till have control over the generated didtricts. So the city will be
highly parameterised and the user will be able to change the parameter values to seek
the preferred dispostion in the cities.

Looking a the physica appearance of red cities it can be seen that different areas
of the cities have different digtributions of buildings, dengity, green aress, €c... Soitis
necessay that the didtributions in each didrict are different. This characteridtic
increments the difficulty of the agorithm in an important manner but the results are more
credible. Given this necessity of interactivity between the user and the dgorithm, ease of
use and an interactive interface is necessary. To write this program OpenGL, Xforms (a
library for the generation of user’s interfaces), C++ and STL (the standard library of
C++) have been used.

The basic tasks carried out by the agorithm are the following: Firgly, it is necessary
to trandform the connectivity informeation into physica information. The edges of the
input graph are the dreets of the city and the nodes are crossroads. This information
will be transformed into graphic information that can be used by a badc vewer.
Moreover, the representation of the city must be independent of the viewer because if a
change to the viewer is needed, the city file must remain undtered. So, a high levd file
format that defines the city consstently but does not give graphical information will be
sought. This means that grgphica information such as polygons, vertices, or files with
mode s will not be given.

At the moment the city only has the boundaries of each didtrict, but there is nothing
indde the didrict. So the next step is the introduction of city eements in each didtrict.
To do this buildings, roads, monuments and parks are inserted in each didrict. This may
seem like asmall number of different eements, though each of these objects can have a
large number of representations, improving the gppearance of the whole city.

In the following sections al these subjects are explained in more detail, and the
techniques used to solve the different problems will be shown.

September 1999 95

eSCAPE eSCAPE systems, infrastructures and techniques

The Representation of the City

As it was argued in the previous section, the representation of the city must be
independent of the viewer. This is necessary for various reasons, mainly because the
changes to the viewer must not affect the generator. These must be independent
programs and it must be possble to ather introduce new agorithms to get different
layouts in the digtricts or to change the techniques used in the generator without have to
change the viewer. This was a necessity from the beginning of the project because the
work process consisted of adding fegtures to the dgorithm and of using a very smple
viewer to prove the results Also the changes to the viewer must not affect the
generator because the easiest way to improve the physical gppearance of the citiesisto
cregte a very good viewer and leave the respongibility of giving a nice representation to
the viewer. This was necessary in the project because it was impossible to cresate a
good viewer a the beginning when the main task was the generator. It was impossible
to spend too much time on the viewer. It was preferable to use this time to create a
good generator and to improve the viewer & the end of the project to give a nice and
convincing appearance.

Also the induson of the grgph with the main dreets is necessary in the find
representation because this information can be used for quite alot of useful tasks. So,
with this information it is possible to seek short paths between didtricts or crossroads,
sudy the connectivity of crossroads and any other operation in graph theory. This
information is useful for navigation, to improve the generator, to establish transport
lines, etc...

To achieve these objectives the information is given in three parts. the crossroads,
the roads and the didtricts. It must be pointed out that with the roads and crossroads,
the graph isimplicit, and extrainformation is not needed.

Taking into account the underlying grid structure, the whole city is represented by
tilesin a very usua way by other gpplications such as 2D games. The crossroads are
given by their position on the grid. After that, the crossroads are represented by means
of tiles. Itsinitid and final crossroads and the tiles between these two crossroads give
the roads. Finally the digtricts are given by the roads and crossroads that create the
digrict and the buildings, parks, monuments and roads indde the digtricts. These last
four lements are given by indicating the tile where the object must be placed, the kind
of the object (building, park, road or monument) and the specific height of the object if
thisisabuilding.

These are the basic ideas of the representation, but the important part is the
generation of the dements in a credible way. This only can be done using appropriate
techniques, as the following section will explain.

Generating the Streets

Given that the input to this program is a graph with nodes and edges, it is necessary to
transform this information into a more suitable format to work out the correct tiling of
the streets. The decison of only using streets with the direction being amultiple of 45°,

96 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

in addition to the smplification and facilitation of the program used to draw the Streets,
has facilitated the implementation of the current program. If any direction for the dtreets
had been possble, the tiling technique woud be impossible, because different kinds of
tiles would have been infinite. With this approximetion there are only eight possible
directions (one for each cardind direction) that can be set or not. This gives a number
of different tiles of 256, till big enough to be implemented (see Figure 4.15).

Figure 54: Format of a crossroad

The following way to solve the problem has been chosen: each crossroad has been
represented by a matrix of 4x4 tiles, being a unity in the input file split in four units here.
With this representation for the crossroads and a predetermined number of tiles dl the
combinations that can gppear in a crossroad can be dedt with.

Grnainal Rot Rot ¢ Rat 18U <ot 2/

L —L 1 =
"] Dk
;S — 7
K—K
L—L
V—V
L—4L
—
1—1"1

Figure 55: Tiles needed to represent the streets and crossroads

1MLV LEZTL

CIONNON
LLEC72A0@A

This was done because on splitting a crossroad into smaller tiles, the number of tiles
needed is reduced to only 35 tiles, and by using rotations this number is findly reduced
to 10 tiles (the 9 tiles shown previoudy and the empty tile). Thisis a andl enough
number to be used and the inclusion of files containing the 3D representation of each tile
Ismore sengble.

September 1999 97

eSCAPE eSCAPE systems, infrastructures and techniques

So, for each crossroad the tiles that are needed are chosen and saved. Therefore,
with the previous tiles, the cregtion of the Streets is dso possible. The Streets can only
have four different representations and the dgorithm to creste an optimised
implementation uses this. So, the digtribution of the tiles in the dreets is carried out in
the way shown below.

Esel or Wess{

Narh ar Sruta

Norh-Egsi or 3ouh-\Wast

Soulh-Zusl or Narh-Wasl

Figure 56: Different kind of distributions that can appear in the streets

Only declaring the kind of tile, but not indicating vertices, polygons or files with modds,
the independence between viewer and generator is achieved. The representation of the
cities is not its responghbility and so the smalest description possible is given. The
viewer is respongble for displaying the correct representation of each tile in the way it
chooses.

Solving the Height Problem

To work out the height digtributions of the didtricts there are different dternatives. The
eader is to assign a random height to each building. This goproximation is trivid to
implement but the results are quite smple. A better solution must work out the height
digributions taking into account the Spatial Interaction Models and Central Place
Theory mentioned in a previous chapter. To do this is necessary to identify the didricts
that have more weight in the city. These didricts will be the city centres, and the heights
digtribution of the city will depend of the weight of each didtrict in the whole city. So,
the digtricts with more weight will be tdler than the others.

98 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

To do this firstly aweight is assgned to each digtrict and after that, depending on
the weight value a height is assigned. The heights are taken from a discrete and finite set
of vaues. This property has been taken because it is heeded afinite number of buildings
for the models that represent each building. Thiswill be discussed in the viewer chapter
later.

To assign the weight value, the following technique has been used. The digtricts with
a bigger weight will be the didtricts that are the nearest to the rest of didtricts. In order
to give more importance to the smalest didricts, the perimeter of the digtricts hes dso
been taken into account. The minimum distance between each par of nodes of the
greph that represent the city is worked out usng the Floyd dgorithm. Initidly, the
distances between each joined pair of nodes are added to an array. The maximum
possible vaue is assgned to the nodes that are not joined (when a new distance is
caculated for these nodes, it dways will be smdler than the initid, overwriting it & the
first opportunity). The distance between a node and itsdlf is dways zero. The recursive
function that performs the caculus of the minimum distances is the following:

D*(i, j) = min{ D**(i, j), D**(i,k) + D**(k, j)}

Once the minimum distances is caculated between each pair of nodes, the tota
distance of anodei isthesum of dl thedementsintherow i

D matrix
4 J NumNodes
afo :
' ﬁ
D(ij} = minimun distance
hotween i and j nados
i :
---------------------- IFememeneeeed Sum{row i) = tafal distance
: betweon the node i and
the rest of nodes,
NumNodes

Figure 57: Representation of the Minimum Distances Matrix

To work out the weight value of a didtrict, the sum of the nodes that belong to the
digrict are divided by the perimeter of the didtrict.

Numcl;lodes
ValueOfNode(k) = Q D(k,i)
i=1

Formulafor caculating the vaue of anode

September 1999 99

eSCAPE eSCAPE systems, infrastructures and techniques

NumNodesl nDistrict(i)

a ValueOfNode(k)

ValueOfDistrict(i) = kel —
Perimeter OfDistrict

Formulafor caculaing the value of adidrict

A linear mapping is goplied to assgn to each didrict a discrete and finite vaue given the
average height of the didrict. To do this, a finite number of different heights are
assigned, then the maximum vaue is given to the digrict width maximum weight. The
vaue 1 is given to the digrict with minimum weight. Then, depending of the vaue of the
weight, a height vaue is given to each didrict. This linear mapping can be seen in the
next equation:

_ &(Number OfHeights - 1) * (ValueOfDistrict (i) - Minvalue), ,
g MaxValue - MinValue H

DigrictHeightValue(i)

Formula for the height of a didrict. The NumberOfHeights is the number of different
heights that the city will have. The MaxVdue and MinVaue are the biggest and samdlest
height found in the city.

Findly, the haght vaue is the average height vaue of the didtricts, but each didtrict
must have different vaues in their buildings because in other case, the results are not
credible. So, arange around the height vaue of the didtrict is assigned, and each didtrict
will have buildings with ther height induded in this range. So, being the height of the
didrict the centrdl vaue, the minimum and maximum values are caculaed subtracting
and adding the amplitude of the range respectively.

The Virtual City Builder (VCB)

One of the dtates to carry out in the agorithm isfilling each of the didtricts in the aity
with buildings, parks, smdl roads, monuments and other stuff. In order to do this,
different techniques can be used. From the previous implementation of the city
generator and the study that there was made (Bowers, Murray et a, 1998), it was
established that the Virtua City Builder (VCB) generated quite credible structures.

The VCB was the result of Bowers investigations about dgorithms for building
virtud cityscapes (Bowers, 1995). Bowers's thinking about cityscapes was influenced
by the writings of Bill Hillier and Julienne Hanson. In the The Social Logic of Space
(Hillier, 1984), they showed, through an andyss of hamlets and smdl villages in the
South of France, that even such smple, unplanned, ‘organic’ settlements manifested an
‘underlying order’ which subtly concentrates socia encounters in some places and not
others, which makes some parts of settlement more readily accessible than others, and
which overdl produces a configuration which ads navigability. They outlined a
computer program (Hillier, 1984; p.59-61) for smulaing the spatid aggregation of

100 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

buildings to make up settlements which manifest many of the properties of smple red
seitlements that they had identified. John Bowersin the VCB extended the idess of this
program o that it was possible to generate a greater variety of settlement forms.

VCB proceeds by repestedly aggregating dements onto seed element. Each
element congds of a closed cedl joined with an open cdl. VCB aggregates these
elements onto a 2D surface with geometric squares as cdls. Each new dement added
joinsits open cell full facewise onto another open cell. The location of the closed cell of
the dement is randomly sdected from those Stes available which are adjacent to the
element’s open cdll.

Figure 58: Possible combinations for a cell joined into an existing cell

The random sdection of the closed cdl location can be weighted by how many
facewise neighbouring closed cdls each avalladle ste has. Changing the weghts from
an even digribution will make VCB more or less likely to aggregate closed cells when
they adjoin other closed cdls. An even probability distribution tends to produce forms,
which are tangled with many short winding streets and small groups of closed cdlls.
When closed cdl sdection is highly weighted towards those Stes which dready have
one closed cdl neighbour, the virtud cities generated have many long dreets with
narrow terraces of closed cells and rarely an isolated closed cdl with no neighbours.

If further condraints are introduced such as excluding sites which have only a
vertex-to-vertex join to other closed cdl, VCB's virtud cities tend to have a Structure
whose open space structure contains no rings or circuits. The open cells are connected
forming atree asit is known in grgph theory.

All these features will be taken into account in the final implementation because of
the variety that the cities present when they are used. Different vaues for the
parameters of the dgorithm (weghts, initid number of seeds number of cdls to fill)
yield different digtributions. Some of them are more credible than others and it will be

September 1999 101

eSCAPE eSCAPE systems, infrastructures and techniques

interesting to search the vaues of the parameters that produce the best distributions.
These parameters could be used as standard values for the user. In this way the user
would not have to know anything about the agorithm, he just would have to indicate
the kind of distribution that he wishes. Actudly, the user needs to introduce the
parameter vaues, but by smply trying different values the user can eadly understand
how these values must be used without understanding the underlying agorithm.

Joining the VCB with the Districts

The different shapes that the digtricts can have means that the inclusion of the VCB in
the digtricts is not trivid. Now it is necessary to work with non squared shapes in a
correct way but maintaining the same functiondity that the VCB had before. Looking at
the previous decompositions that the roads in the digtricts had, it's quite obvious to
redlise that the new agorithm must fill only the correct cdlsin the grid. To do thisVCB
fill a square that surrounds the shape that the digtrict has. After that, only the cdlls that
are ingde the shape are preserved.

The way chosen to do thisis the following. Firgly, the surrounding box of the shape
Is sHected ugng its maximum and minimum vaues for x and y coordinates (see Figure
4.20). This surrounding box is filled with the VCB using the sdected values for the
agorithm. Then, a mask is created with the cdls that are ingde the didricts. This
problem is the same as that of trying to fill a polygon with pixels and so the known
techniques for doing this are used in this context. The shapes tat are used can be
Convex or nonconvex, S0 it is necessary that the adgorithm deds with them. The
problem is solved with a Filling Polygons adgorithm (Foley, 1989). The crossroads and
main roads of a didrict are given as vertex and edges for the algorithm (conceptudly it
Is the same). The dgorithm fills this shgpe with boolean vadues that indicates if the
corresponding cdl in a position must be used as part of the didrict (Figure 59). A new
problem is that the roads and crossroads are continuous by nature and must be made
to have discrete vaues. The filled shape actualy has more cdls than it should. To
eliminate this inconsstency, the roads and crossroads are subtracted from the filled
shape. After this, the shape has the correct cells and it can be used as mask for

obtaining the find result.

=> - =
—
(&) shapsa lu by shaps filled by () mask delgriminec (d) I nal region
ke Til & Lhe Til Br by lha raacs

Figure 59: Joining the VCB with the districts

102 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

This mask is applied to the square worked out by the VCB and the correct cells
are findly used. Now that the cdlls that must be used are known, it is necessary to
transform these to the elements of the city. The cdls returned by the VCB can be of
three different kinds. They can be roads, buildings or empty cells. If acdl is an empty
cdl then a park is sdected as a city object. If it is a building, then a random height is
selected for the building in the previoudy calculated range. Findly, the roads are dedlt
with in amore tricky way. A type of road is sdected for a given cdl depending of the
neighbouring cdls. If none of the neighbouring cells is a road, then a monument is
assigned to this cdl. Initidly, 16 different tiles are needed, but using rotations, this
number is reduced to only 6 different tiles.

Neighbours Asigned Tiles

oo] —— [m] roadDd
oop1 O —— [mm roadt
0010 @ — II, roadz2

0011 @ —_— E Rol 90froad1)
0100 @ — E Rot 180(road1)

oto1 N —— jm r0ad2

otio] ——> Bl | Rot90(road2)

0111 O — il road4

1000 @ e m Rot 270(road1)
1001 B —— [Rot270(r0ad2)
w10 O — [J]] Rot 90 §roaus)
1011] —— [Rot 270(r0a04)
1100 @ —_— E Rol180(rear2)
101 | ——> g Rot 180(r0a04)
1110 B —> W] Rot 90(roacs)

1M1 @ —l E roars

Figure 60: Calculation of tiles inside districts

All of thisinformation is saved as elements of adigtrict, and this process is repeated
for dl the digricts in the city. The process of joining the VCB and the didricts is quite
tedious and tricky, but the quality of the obtained city makes this effort is vauable.

September 1999 103

eSCAPE eSCAPE systems, infrastructures and techniques

The Makecity Program

All the techniques discussed in the previous sections mugt be integrated in a unique
program that carries out al of the necessary steps to generate the find cities. This
program is one of the deliverables of the project and specia care has been placed onit.
Congdering that the user needs to change the layouts of the didricts in an easy way,
ways to manipulate the didricts easly have been implemented. A picture with the
interface of the program can be seen in the following figure.

[e

Coog|

Figure 61: Interface of the Makecity program

To eadly sdlect the didtricts, the sdlection possibilities of OpenGL (Wright, 1997)
have been used. By only clicking on the desired didrict, the digtrict is chosen and all the
available information is diplayed in the pane created for such effect. In this pand the
user can change dl of the parameters of the selected didtrict and see the results in red
time. Also the trandformation of the whole city is possible.

In order to implement the control pand, the Xforms library has been extensively
used. This is a multiplatform library that dlows the easy creation of complex user
interfaces in short time. The library provides a graphica tool that alows the creation of
the windows in a visud manner. After the windows are cregted the tool generates the
code automaticaly. To associate events to the components of the windows, calback
functions have been written

104 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

The program has the possibility of saving the dty in a file format (this will be
subsequently used by the viewer) or loading a previoudy saved city. The graph with the
dreets created in the drawstreets program can be loaded in the gpplication using the
import command. Also the qotion of exporting the city to anoother program is given.
This is necessary because an editor for the transformation of the cities with a VR
interface exigs.

Discussions

Although the VCB generates quite credible structures, other adgorithms could be
implemented to give more variely in the different districts So, it could exist digtricts
without buildings. In these big parks some kind of Biologically Inspired Algorithms
could be used in order to get a more chaotic distribution for the trees. The problem
with the VCB and the parks is that the VCB creates quite regular structures and the
green aress need more natural structures.

A problem with the present implementation can be seen in the boundaries of the
digtricts. It seems that the main sreets are disconnected from the rest of the roads
ingde the didricts. This is because the union between these two kinds of roads has not
yet been implemented. This needs new kinds of unions and the necessity of different
tiles, but it isatask that must be performed.

Findly, the grid dructures that exist in al the modern cities have not been
implemented. This is a quite draightforward task that can be rapidly implemented.
Although these dtructures seem unred, they must be implemented because dl of our
modern cities have alot of digricts within them.

The Viewer

The main objective of the work reported here is the generation of credible physical

layouts for the city. This credibility has been sought in various aspects. It is absolutely
necessary that either the dispostion of the dementsin the city or the physicd layout of
the city have ared appearance. So, algorithms and tools that generated real structures
were developed. It is true that a good appearance and a sense of redlity is probably the
main objective bu this has minor utility if the contained information in the city is lost
after the physical layout is worked out. Therefore, it is necessary that besides the
physica digpostion of the dements of the city, another kind of useful information is
obtained.

By the very nature of the project the creation of a viewer is necessary. The find
objective of the project eSCAPE is the creation of Virtud Redity applications where
the user is able to perceve the information in a visuad manner. Furthermore, for
checking the correctness of the implemented dgorithms, the cregtion of a viewer is
needed. Taking into account that the viewer was a necessary task but not the most

September 1999 105

eSCAPE eSCAPE systems, infrastructures and techniques

important of the project, it was decided to implement a Smple viewer that was useful
for the assessment of the resulits.

It is necessary to note that the viewer is only useful as a tool for checking the
correction of the decigons taken in the implemented agorithm. So, both the visua
richness in an artistic manner and the management techniques of a virtud redity
environment have been reduced to a minimum. This has dlowed efforts to be
concentrated on the really important parts of the project. But, as said previoudy, in a
fina gpplication where the user will receive dl the information by means of aviewer, it
will be necessary to put more emphasison it.

Architecture and Implementation of the Viewer

The previous decison to cregte a Smple viewer must be studied in detail. This minimum
comes from the fact that some of the characterigtic that aviewer must have to manage
the informaion in an efficent way will not be implemented: An example of a
characterigtic that a viewer should own but it has been decided not to implement is that
it should have implemented some culling technique for obtaining adequate frame rates.
The decison to not implement any advanced culling technique was taken because to
display the layouts of the cities, it is necessary to show dl the information.

For usng the viewer as a checking tool, overdl views of the cities were needed.
This means that using culling techniques such as bounding volumes (Clar, 1976),
hierarchical bounding boxes (Rubi, 1980), gridcdls (Brooks, 1994) or any other
technique has little use.

In a red viewer whose objective is to carry out virtud wak-throughs in the
generated cities the Stuation would be completely different. In a viewer of this kind the
user would be moving in the dreets, ingde the city. This means that a large quantity of
the information is not visble due to occlusons, excessve distance to the camera or
other reasons. In aviewer of thiskind it would have been necessary to implement these
techniques, aswill be discussed in a subsequent section.

Another of the characterigtics that has not been implemented is collison detection.
Because overdl views are needed, in the same way that happened with culling, collison
detection is usdess. Thisis because the images are dways shown the from top where it
is impossible for the camera to collide with any object. As well as not implementing
these characteristics, the objects that appear in the city (buildings, trees, Streets, €tc...)
have been smulated in the smplest possible way. This has made the usage of other
techniques such as Levels of Detall (Clar, 1976) unnecessary.

Now that the characterigtics that will not be implemented have been discussed, it is
necessary to see how the viewer has been designed. As mentioned in a previous
chapter, there are two possibilities when the viewer and the generator are designed.
One possibility isthat the generator returns the basic information (streets, buildings and
parks dispodtion) and the viewer generaes the remaning information. Another
posshility is that the generator returns dl of the possible information and the viewer
only shows this information. This last decison has been taken for different reasons: it
makes the viewer smpler, because to improve the visua aspect of the city it is only

106 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

necessary to modify the viewer or because the generator has a better knowledge of the
city structure for generating dl the needed information.

Therefore, the viewer will only serve for showing the information cregted by the
generator. So, with the viewer it is sought to show the generated characterigtics and to
demondtrate that the obtained results are redigtic. Furthermore, the viewer must be
useful for demondrating that useful informeation is returned and not only asmple ligt of
objects. With the viewer it will be possible to observe that the cities are composed by
Sreets, digtricts, parks, etc... It dways will be possible to know the buildings, parks,
monuments, crossroads, streets, etc... that belong to a concrete didtrict. This hierarchy
in the information could be used for a more effective implementation of visudization
agorithms, asit will be seenin alater section.

For the implementation of the viewer MAVERIK (Hubbold, 1996; Hubbold et a,
1999) has been used. MAVERIK was designed as a VR interface kernd which
provides a generic framework which is easly cusomised for different gpplications
(Xiao, 1997). On this occason the viewer is programmed in C. This is because
MAVERIK is programmed in C and some adapting is needed in order to use it with
C++. Because the viewer is very smple, the advantages of C++ over C would hardly
be noted and the difficulty of adapting MAVERIK for using with C++ large.

The viewer loads the information crested by the generator and visudises it
providing a basc navigation. With the information that the viewer has, it is possble to
generate the visud gppearance of the city. Given that it is the generator, which decides
the kind of city eements, the viewer only has to show a convincing representation of
these objects. This has been decided for different reasons. The first and principd is
because to change the aspect of the city to have a better representation, would not
need any code to be written. Actudly the buildings are represented in a quite smple
way (very often with a box for the wals and another one for the roof. The detail has
been smulated by means of textures. With the streets and gardens the same happens.
The trees are two crossed plains with texture. The monuments are the unique objects
that are represented in full detall.

(a8 Common building structure (b) Tree Structure

Figure 62: Common representations for buildings and trees in the viewer

These objects are modeled with AC3D objects (It is the format used by
MAVERIK, but other formats such as 3Dstudio, VRML, Alias, ... could be used).
There exists an AC3D file for each kind of object. This is loaded by the viewer and
subsequently used. This has been made because to improve the visud aspect of the city

September 1999 107

eSCAPE eSCAPE systems, infrastructures and techniques

it is only needed to change the AC3D files. This property can be used to present cities
of different periods, different geographic regions, different cultures, etc...without have
to change ether the generator or the viewer.

The drawback of this approximation is that the viewer can not control the correct
appearance of the city, because it depends of the coherence of the AC3D files. For
seeing this, it is sufficient to note that when the generator works out the building height
digributions, it returns the buildings with a determined type. In the type of building the
height that it must have is implicit. So, if the AC3D objects that represent these objects
do not represent the implicit heights in a correct way, the height distributions are logt.
With the gardens (if the mode represents a building insteed of a park then the park is
lost), monuments, streets, €c... the same thing happens. It is annoying that the viewer
is not able to control the coherence of the representation, but it is supposed that the
object are dways going to be correct, and the advantages of this solution are bigger
than the drawbacks.

Another problem with the citiesis that they are large in Sze. So, care must be taken
with the objects that form the city. A master object is used for the representation (if it is
not done in this way, the memory needs would be enormous). The possibilities that the
MAVERIK kernd brings have been used for this purpose. Although it has not got
functions for doing this directly, it alows the access to the Structures, being this a way
to achieve the purposes.

The MAVERIK MAV_SMS sructures have been widely used to visudise the
information. As was previoudy pointed out, the viewer alows sdecting the kind of
information to visudise. Once some kind of information is selected (dl the buildings of a
digrict for example), dl the information of this kind is shown. This means that specid
dructures for searching information in an efficient way are not needed. Furthermore,
because there is no collison detection, culling or object selection no specid structures
are needed. So, the lined structures that MAVERIK provides are used (Cook 1998z;
Cook 1998D).

numobj (original) numobj (original)
L obj (pointer to
obj (original) |« original)
bb (original) bb (instance)
selobj (not used) selobj (instance)
matrix (not used) matrix (instance)
userdef (not used) userdef (instance)
Original Composite Instance Composite

Figure 63: Saving space using MAVERIK

108 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

The information is organised in the following way; there are linear ructures in the
city for saving the crossroads and Streets. Moreover, there isalist of didricts, in each
digrict independent linear structures for buildings, monuments, parks and ground are
saved. Furthermore there are lists with pointers to the crossroads and Streets that form
adigrict.

City
Crossroade [T\ T L T 1T 1/] seats [T T T TLITTTT]

Diztrct 1 DistrctN

Ground Tiles Ground Tiles I 1117
Mo menls Mo, ments D:D:Dj
Buidings AEELEE Buiings 11
Parks Il Parks CITTTT]
Lisl of Crosscacs List of Srosswacs m
Lisi of Streete Lig1 of Stree:s ITI11131

Figure 64: City Structure in the viewer (main structures)

This gructuring of the information alows visudisation of the information without any
search cogt. If it isonly needed to show the buildings of a concrete didtrict it is sufficient
with only displaying the buildings linear structure of the sdected didrict. If dl the
elements would have been inserted in an unique SMS Structure, to display a determined
information it would be necessary to traverse dl the structure checking for the current
element to carry out the visudization condition. This means tha the presentation of the
information were dower and with lesser frame rates.

As was pointed out before, the fact that the generator creates the information and
the viewer only shows it has made the viewer qiite Smple. Looking at the viewer
source code it can be seen that an important quantity of the code has the objective of
load the information from the input file created by the generator. Redlly, thiswould have
been changed completdly if the necessary characteristic had been implemented (culling,
collison detection, levels of detall, etc...).

Due to the characterigtics previoudy mentioned, the frame rates of the viewer when
dl theinformation is shown is quite low. For asmadl city, it can be about 2000 buildings
and 4000 ground tiles. With this enormous quantity of informetion, it is impossble to
get more than 4 or 5 frames per second in a machine with Pentium 11 and VVoodoo |1
graphics card. Fortunately, the viewer dlows the sdection of the kind of information to
be shown. So, if it is wanted to change the point of view of the city, it is sufficient to
decrease the quantity of information, move the camera and display al the information
agan.

If it is sought to do a virtud wak-through by the streets of a medium size digtrict,
the frame rates in the mentioned machine are quite good. Taking into account the fact

September 1999 109

eSCAPE eSCAPE systems, infrastructures and techniques

that there is no culling technique and when the camerais indde a didrict the res of the
digricts are normdly not visble this probably means that on agpplying culling
techniques, the movement indde these big citieswill be possble a high frame rates.

Discussions

As discussed before, the viewer is only a means to see the correction of the rest of
the project. Keeping in mind this objective, the implementation has been kept as smple
aspossble. A better implementation must include the following characterigtics

The implementation of efficient culling techniques is needed. Looking at the kind of
information displayed and the hierarchy in the information, it is possble to teke
advantage of this. So, the digtricts could be used as a quick way to sdect the
information to display. It would be ussful to check the intersection of a concrete digtrict
with the camera fustrum. So, if the didtrict isingde the camera fustrum or intersects with
it, the digtrict should be displayed and then chosen for a refinement afterwards. In a
later Sate, techniques such as occluson and levels of detall could be used. The building
representations should be more detailed. This would imply the necessity of usng
occlusons to only send to the graphics pipeline the objects that are visble. In this
goplication, normaly the buildings occlude quite a lot of information, meaning thet the
use of occlusion is very ussful. Moreover, the use of levels of detall could increment the
frame rate. Only displaying the objects in the first plane of the camera with full detall,
and depending on the distance to the viewer reducing the detall, it is possble to
decrease the number of polygons submitted to the render with the subsequent
performance improvement.

The underlying grid structure of the cities could be used as a culling technique (see
Figure 65). It could be used to sdlect only the cells that are ingde the view fustrum and
apply the occlusion and level of detail techniques to these cells. Probably this could
imply a better performance but it has not been tested to see how or whether the
gpproximation is correct.

N
N

Figure 65: Culling technique. The grey cells represent the cells that must be displayed.
The thin lines are the boundaries of the districts. The triangle represents the camera
fustrum.

110 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

Findly, the implementation of aid techniques to the navigation is compulsory. The
possihility of passng across the buildings or other objectsis quite disturbing and it must
be avoided. The incluson of collison detection is needed to improve the navigetion.
Furthermore, nove techniques for navigation such as Forced Fiedd Guided Wak-
Through (Xiao, 1997) could be used. In it, the user’s movements are guided by aforce
field, which asssts the user to avoid obstacles during navigation.

Images

There are some examples of images displayed by the viewer:

September 1999 111

eSCAPE eSCAPE systems, infrastructures and techniques

112 eSCAPE Deliverable 5.1

Chapter Five Generating Virtual Cities

- Left mouse button - navigate forwsardibackward and yaw
- Right mouse buttan — navigate up/down and lefiright

a - Show all objects

d — Show districticity

| = Shoaw districticity Information
h — Show help

b — toggle buildings ORAGFF

¢ - boggle crossroads DMNIOFF
g — toggle ground ORICHEF

m — taggla monuments ORNOFF
r - toggle roads OMIOFF

t - toggle trees OMNIOFF

= none [(only show erossroads)
5 — select district

- quit

Future Work

As discussed throughout this report, the given solution needs further work to give a
better gpproximation to redity. The actua implementation obtains quite good results,
and the qudity of the generated cities encourages the development of the agorithm.
Summarigng, the areas that need more work are the following:

It is necessary to include a Terrain Generator because the inclusion of geographic

properties (rivers, mountains, etc...) will give to the cities greater variety.

Other dgorithms must be included in the Filling the City with Objects process.

The placement of services must be implemented.

September 1999 113

eSCAPE eSCAPE systems, infrastructures and techniques

The viewer needs the use of culling techniques in order to ded with dl the
generated information.

114 eSCAPE Deliverable 5.1

Chapter 6
Wayfinding in the virtua cityscape::
Professor Dijkstra goes walkabout

Ahmed Rahali and Roger Hubbold
The Universty of Manchester

This chapter describes work done to provide an efficient way of navigation and transportation
around virtual cityscapes. In a number of applications, the problem of determining the, in some
sense, optimal path occurs. This could be anything ranging from finding the fastest path in a
network to determining the safest path for a robotic craft wandering upon the surface of Mars.In
the same context, this project deals in particular with finding optimal routes in a virtual cityscape.
The metaphor of a city provides its visitors with the ability to navigate around, walking along
streets and across open spaces. The need for an efficient way of navigation and transportation
around the city was evident. Our virtual tour-guide is named Professor Dijkstra after the
originator of the driving algorithms.

Problem Definition

The am hereisto design and implement a solution for Dijkstra, the city guide, which he
can use as an efficient way to autonomoudy determine the fastest route to a given
degtination in the city. The immediate practical problem instance that this project sets
out to olve isthe following:

Given the virtud cityscape as developed in, find the best way to travel betweentwo
points or even a series of points. Obstacles along the way should of course be avoided
in an efficient manner whenever possible.

Project Goals and Requirements

Theinitid am of thiswork was the research into the development of a virtud city guide
in order to move around Dijkdira’s city as efficiently as possble. The idea behind this
was to use some sort of agorithm to determine the shortest (least-cost) path between
two different nodes in a graph dructure. A study into graph theory was initiated, and
different adgorithms that address this problem were andysed. Different ways of
representing the city as a graph were studied.

Dijkgras city is a complex virtud environment. The need to transform this
complexity into asmaller, Smpler and managegbl e structure was apparent. So, as afirst
dep, an investigation into means of annotating the city was crucid in order to build the
needed information. This information was then represented as a virtud map tha is

September 1999 115

eSCAPE eSCAPE systems, infrastructures and techniques

ampler in sructure, but semanticaly more informative to the user asit describesthe city
as awhole in aless obscure way. A map being aso viewed as a graph could, then,
eadly be manipulated using different traditional graph agorithms

Dijkdra’s city and the virtud map describing it, being two separate environments
cdled for the need to establish a link between the two environments to provide a way
of communicating actions and/or changes in ether. To make the application user
interactive, the virtua map forms a platform that provides a means of conducting some
user operations. It dso serves as away of animating al actions performed in response
to user requests or dterations.

This project as proposed had alarge scope for imagination that alowed many idess
to evolve during the course of work. Firg of dl, it was clear that a city vistor may want
to wander around the city independently. When following a particular route, one must
not be restricted to the pre-planned destination and should be alowed to change their
plans as desred. Consequently, the solution should give the user full control and
freedom. On top of that, some city visitors might want to drive around, whereas others
might prefer to walk. So, the system should cater for the user’s choice by providing a
driver's map as well as a pedestrian’s map each computing different paths and their
asociated costs. Moreover, a more interesting solution would permit the user to
interactively introduce obstructions and one way dreets. These effectively cut off links
between certain points in the city, making some optima paths temporarily unavailable.
As a result, new methods to find optima aternatives incrementaly needed to be
developed, in order to avoid an extremely costly re-evauation of the shortest pathsin
the adtered graph structure.

Such an dgorithmic problem are bounded by a number of factors. Firdly, it should
be time and memory space efficient. Secondly, It must exhibit accuracy and reiability
50 that the optima path will dways be found. Last but not least, it should be flexible
and genera purpose, so that it can be adjusted and gpplied to different instances that
fdl in the problem scope as defined earlier.

All-pairs Shortest Path Problem

A graph G=(V, E) comprisesaset V of N vertices, andaset Ei V “ V of edges
connecting verticesin V. Each of the edges is associated with a weight that represents
the cost of getting from source to destination. In a directed graph, each edge dso hasa
direction. A graph can be represented as an adjacency matrix A in which each dement
A i, j] represents the weight of the edge from nodei to nodej.

A path is a sequence of edges from E in which no vertex appears more than once.
The shortest path between two vertices in a graph is the path that has the least codt.
The sngle-source shortest-path problem requires that we find the shortest path from a
sngle vertex to dl other verticesin agraph. The dl-pairs shortest path problem requires
that we find dl shortest paths for al possible pairs of vertices in a graph. The following
sections describe two different gpproaches that address this problem.

116 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

Dijkstra’s Algorithm

Dijkgras sngle-source shortest path greedy agorithm computes dl shortest paths to
travel from a given vertex in agrgph to every other vertex. The agorithm maintains a set
T of vertices not yet visted and alist D of shortest distances using only nodes aready
vidted as intermediates. At each stage a vertex v from T which has the shortest vduein
D ischosen, and D gets updated using:

D[W]=min(D[w],D[v] +A][v,w]). ForeechwinT.
%

Figure 66: The comparison operation performed in Dijkstra's single-source shortest-path
algorithm. The best-known path from the source vertex s to vertex w is compared with the
path that leads from s to m and v then to w.

Floyd-Warshall's Algorithm

Hoyd-Wardhdl’'s dl-pairs shortest path dynamic dgorithm computes al shortest paths
to travel from any given vertex on a graph to every other vertex.

Define the function D (k, i, j) asthe shortest distance from i to j usng only nodes
from 1 to k as intermediate points. If the given weights of edges are dl A [i, j] entries
in the graph’ s adjacency matrix then D (0, i, j) = A[i, j] describes direct paths with no
intermediate nodes.

The basic ideahereisthat if we want to find the shortest path from i to j, usng only
nodes 1 to k asintermediates, two possibilities can be distinguished:

The path does not actually use the node k, in which case we only consder the use
of nodes 1 to (k-1) asintermediates and the cost of the path isjust:

D (k-1,1,).

The path does indeed use the node Kk, in which case the path from i to j passes
through node k and therefore has the following cost:

September 1999 117

eSCAPE eSCAPE systems, infrastructures and techniques

D (k-1,i , k) + d(k-1, k, }).
So the lease cost path is then given by the formula

D (k i, j) = minimum (D (k-1,i,), D (k-1,i,K) + D (k-1, k, j))

N

Figure 67: The fundamental operation in Floyd's sequential shortest-path algorithm;
Determine whether a path going from i to j via k is shorter than the best-known path from i
to j

Hoyd-Wardhdl’s All-pairs Shortest-Path Algorithm derives a matrix S containing the
best-known shortest distance between each pair of nodes, in N steps, constructing at
each step k an intermediate matrix L (k). Initidly, each S(i, j) is st to the length of the
edgefrom i to j if the edge exists, and to INF otherwise. The k™ step of the agorithm
consders each k in turn and determines whether the best-known path from i to j is
longer than the combined lengths of the best-known paths from i to k andfromk toj.
If 0, theentry S(i, j) is updated to reflect the shorter path.

Performance and Complexity Analysis

Suppose we apply both agorithms to a given graph with N nodes.

With Dijkstra s approach, choosing v from T requires dl the dementsin T to be
examined, so we look a N-1, N-2,..., 2 vduesof D on successve iterations, giving a
total time of O(N?) . Theinner loop for updating D for each win T does N-2, N-3,..., 1
iterations for atotal dso in O(N?). The time required by a single-source version of this
dgorithm is therefore in O(N?). An dl-pairs agorithm executes Dijkstra's greedy
dgorithm N times, once for each vertex. Thisinvolves O(N®) comparisons.

Using Floyd's agpproach, we perform a single comparison for every degtination |,
for every given source i, and every possible intermediate node k. From a set of N
nodes, there are N possihilities for choosing j, N-1 posshilities for choosing i and N-2
posshilities of picking an intermediate vertex k. So, it is evident from the three nested
loops that the number of comparisons needed isin O(N®).

It seems like both agorithms have smilar complexity O(N?). However previous
Sudies show that Dijkstrals adgorithm is dightly more expensive than Floyd's dynamic

118 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

technique. In fact, if the cost of a sngle Floyd comparison is t, Hoyd's Algorithm
performs a total of t N°® comparisons, wheress Dijkstals Algorithm involves Ft N°
comparisons, F being a congtant. Empiricd studies show that F@1.6; that is Dijkstra's
Algorithm is dightly more expensve than Hoyd' s Algorithm.

From the analyss above, Floyd's Algorithm seems a good choice to effectively
solve the dl-pairs shortest path problem.

The City Representation

This chapter andyses techniques of annotating Dijkstra's City in order to build the
information needed by Hoyd's Algorithm. We first consider means by which semantics
are added to some parts of the city and then move on to examine closdy ways of
identifying al connected pointsin the city in order to represent it as a graph structure,

City Annotation

Dijkgra's City could only be viewed as a collection of virtua objects, organised
according to the layout generated by the Virtua City Builder Algorithm, introduced
previoudy. These objects in the virtud scene are al congtructed, usng MAVERIK,
from a amdl number of primitive graphicd items such as lines and polygons. They are
then mapped to different texturesin order to make the world look more redlistic.

Various buildings in the city are unnamed. To make city fed red besdes looking
redl, buildings should be classfied and named to enable the user to fed thar existence.
They are d 0 |located independent of each other, each within asingle grid cdl and they
should, therefore, be located using a globa co-ordinate system to make their location
relative to each other apparent to the user.

One way of dassfying and naming buildings is to examine ther randomly st Szes
together with their textures. Since they are rendered as MAVERIK objects their
geometrica properties and texture mappings could easily be retrieved. Firg of dl, we
need to locate building cells within the city 2D grid, usng a smple sequentid scan
operation. Once the position of a particular building is known, we look for the object
that representsit in the virtua environment.

Building objects are tested for sze and texture and are dassfied accordingly usng
different boundary values as thresholds. At the other end we keep a database of some
possible building names that exigt in ared city. The database is Solit into a number of
classes, one for every building category. Each of these contains a collection of relaively
related names that are then randomly assgned to various buildings from the relevant
class.

For instance, alarge building could be a university, a shopping centre, etc. One of a
moderate Size could be a coach dation, a club, etc. One of a smal sze could be a
corner shop, a post office, etc. One of height equalsto zero must be a green space.

September 1999 119

eSCAPE eSCAPE systems, infrastructures and techniques

City Graph Construction

Buildings in the city have now been identified, located and their semantic information
has been stored. However, we ill do not know how different parts of the city are
linked to each other. Since buildings are defined independently each within sngle grid
blocks, the information we have so far is gill not adequate to detect links between
different points. Streets, however, can be used to keep track of those links, because a
street cell depends on its neighbouring cells. It represents a continuation of at least one
of its four neighbours. Hence, the street skeleton does indeed show how different parts
are connected to one another. In this section we shall examine how we use this idea to
extract the rdevant information in order to build a graph of al connected points in
Dijkgtra s city.

Node and Edge Identification

One efficient approach to carry out thistask is top down. In other words, we make use
of the grid-like structure of the city platform. Firstly, we consder each sreet block
independently and identify dl points (nodes) within it, and links between them (edges).
Then, we merge the collection of nodes and edges together into one single graph.

A smple sequentid scan over the grid can determine dl the blocks where a piece
of dreet resides. A typical street block is described as a collection of specid points and
lines linking some of them to some others, as shown on figure 4.2 below.

DegaHEnd
Straight
LJumeiien
TGN
FJumneiien

Figure 68: A street grid cell and its possible classes.

As can be seen from the figure above, the piece of dreet that lies within a Sngle grid
cdl can be any of the listed 5 classes (each class has its own subclasses). The class can
be determined by examining the neighbourhood of the current street cdll. For ingtance if
only one of the 4 neighbour cdlls describes a building or a wasteland, then it must be a
T-junction that we are deding with, and so on. The subclass is then determined by
looking a the pogtion of neighbouring building cells redive to the sreet cdls: north,

120 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

south, east and west. For example, an L-junction would have the following subclasses
&¢éuandl

The geometry of each chunk of street within a particular cdll is described in a
maximum of 12 points as figure 5 shows. The idea is to make use of these dready
caculated points and the dreet class. So, the class of the street tells us how many
points to mnsider; 4 in a dead end case and al 12 in the case of +junction. The
subclass then, determines the exact points to be chosen. A node is created for each of
those picked points, and the suitable edges are also added, as Figure 69 shows.

Figure 69: Idea | on street cell node and edge generation.

The nodes in red are corner nodes, and they are not taken into account unless they
describe a change in direction (a corner edge). The nodes in green are intermediate
nodes. These are of a greater importance because they provide a means of linking one
dreet cell to its adjacent street cells. Each of the edges, in blue, is associated with a
cost determined as being the distance between the two pointsit links.

It should be noted that whilst it would be possible to build a graph of al connected
points using this technique, the graph’s nodes and edges neither lie dong sreets nor
aong pavements, but on the separating edges. This cannot be considered as a solution
for building a pavement graph and aroad graph at the same time, because amply it is
not giving the required leve of precision for each one.

Pavement Graph

To build a pavement graph a amilar gpproach is used, with two enhancements made.
For each of the 12 points we define a counterpart that lies on the pavement. The co-
ordinates of these are obtained by smple shifting and scaling operations as shown on
figure 6. On top of that, the previous method generated many more nodes and edges
then sufficiently needed.

In fact with a dight optimisation, we could achieve a less dense graph with fewer
nodes and edges. It should be noted that some of the corner nodes are only there to
trace the link between two intermediate nodes, and therefore can be omitted if we
provide a direct link between those two intermediate nodes. This helps to cut down on
the number of nodes as well as edges, resulting in a rather smpler structure,

September 1999 121

eSCAPE eSCAPE systems, infrastructures and techniques

Figure 70: Idea Il on pavement node and edge generation.

Road Graph

In this case a maximum of five points is needed for each Street cdl. These points are
cdculated adong the middle of roads and depending on the class and subclass of the
dreet cdl the right ones are chosen together with the reevant set of edges Thisis
shownin Figure 71 below.

DeadEndS
Strafght
LeJumetion
Tedumeion
2 NGt

Figure 71: Idea lll, Road node and edge generation.

Revision Implementation

Design Conclusion

In searching into ways of annotating the city and providing a smpler representation of it,
a fundamentd tenet of the design was to try focusing on the structure of the problem
and how it can be broken down into its smaler, smilar and Smpler condtituent parts.
The city has a grid-like structure that forces itself to be considered, so that atask to be
carried on the whole platform can be resolved within each grid cdl separatdly. Results
are then grouped into one unique solution.

122 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

Implementation and Results

The process of building the city graph (map) involved four mgor tasks andysng the
underlying sructure of the city, extracting the rdevant information, adding basic
semantics where needed and summarising this information into a new database
represented as a new smpler 3D environment usng MAVERIK.

The city grid is scanned horizontally and verticaly to locate and classify street and
building cells. It is quite smple to retrieve the geometrical description of the city parts
generated within each cell asthey are MAVERIK objects. For instance, the x, y and z
spans of a building, which determine its size, could be retrieved and could therefore be
used to classify and nameit. In addition, the object’s matrix, which eventualy describes
the object’s co-ordinates within its cdl, determines the object’s postion in the whole
world once trandated into the world co-ordinates system.

The rdevant Information is stored as two separate sections. one for ‘pavement’
graph and another for ‘road’ graph. Each section contains an Edge-database and a
Node-database. The Edge-database holds data about each edge which includes the
co-ordinates of its source, the co-ordinates of its destination and the cost represented
as a distance between the two. The Node-database is subdivided into two classes,
building nodes and sreet nodes. Each node entry in either keeps data about the co-
ordinates of the node. If it is a treet node the type of Street cell it was created inisaso
dored. If it isabuilding nodeits nameis held on top.

Using MAVERIK’s primitive objects such as boxes and palylines, it is possible to
represent each of the two graphs (maps) as separate environments from the city.
However, it should be emphasised that dthough they are separate environments, the
greph isatightly linked to the city. i.e. every point in the graph has its counterpart in the
city. The pavement graph and the road graph of a city of a moderate Size are presented

repre

Figure 72 and Figure 73 respectively.

The pavement graph and the road graph provide the necessary information for
Foyd's Algorithm to look for optima paths. In addition, they serve as maps tha
describe the overal city layout to the user. On top of that, they provide the user with
the ability to query what different buildings represent and to get their podtion relaive to
the globa structure of the city. They adso detect dl connected points in the city and

September 1999 123

eSCAPE eSCAPE systems, infrastructures and techniques

make these links globdly visble to the user. Findly, they provide platforms for
interaction between the user and the cityscape.

Figure 73: A road map (graph) of Dijkstra’s city.

Virtual City Guide 1

Basic Operations

The city virtud map built in previous not only does it give an overal description of
Dijkgtra’s city and al its connected parts that FHloyd's Algorithm needs, but dso it
conditutes the basic plaiform for any user interactive operation. In the following
sections we look specificdly a finding optima paths in the city by goplying Foyd's
Algorithm to the city grgph. We aso discuss ways to interact with the virtud map in
order to input user requests and animate any output.

124 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

Finding the Optimal Path

Floyd's Algorithm provides the shortest distance between dl of the nodesin terms of a
table (new adjacency meatrix). However, using that procedure provides no information
on the specific pathway that gives rise to these values. In order to construct the shortest
pathway a predecessor matrix (P) is required to be cacuated a each mgor cycle
(corresponding to k in section 3). This method can be implemented in O(N*) time so
not to ater the complexity order of the agorithm. The agorithm in section 3 can be
extended by the following function:

Initially:
P (0,1, j) = NIL, if there is no direct edge from i to j.

P (0,i,]j) =i, if thereis a direct edge from i to j.

Then we keep track of the last node visited (predecessor) using the following recursive
definitions

P (k,i,j) =P (k-1,i,]) if D (k-1,i,]) <D (k-1, i, k) + D (k-1, k, j)

Pk, i, j)=P(k-1,k,j)if D(k-1,i,j)>D (k-1,i, k) + D (k-1, k, j)

The database of nodes and edges with their associated costs is the source of
information that Floyd's Algorithm accesses and manipulates to find for exch pair of
nodes both the distance corresponding to the shortest path as well as the path itself.
The main issue here is rather performance related. Depending on the city sze, the
number of nodes and edges generated could be very large, and so could be the time
required to run Floyd's Algorithm on them. Once the graph is congtructed for any
particular city, as Hoyd's Algorithm solves the problem for every possble par of
nodes it only needs to be called one time. The results obtained can then be stored ina
new database that can be consulted in a congtant access time every time a path
between two pointsis requested. Thisis performed for both road and pavement graph
options.

Moving Between Two Different Points

Once the source and the dedtination are known, the shortest path as wdl as its
corresponding cost can be retrieved from the stored path database. Each path is
specified in terms of a series of nodes to be vigted in the order given and a cost that
corresponds to the distance to be travelled from source to destination. The next step is
to visudise the results obtained on the virtud map and identify where the pathway liesin

the cityscape.

September 1999 125

eSCAPE eSCAPE systems, infrastructures and techniques

In the virtual map Nodes are represented as MAVERIK objects and can therefore
be queried for any information associated with them. Source and destination nodes can
be sdected interactively from the virtua map and ther locations are subsequently
reported and stored in their order of salection. Those locations are then tested against
the (X, y, z) co-ordinates of every single node in the node database, to enable retrieve
the identity index of each node. A sequentid look up in the path database, for the pair
of nodes that match the selected ones provides the fastest way of getting from source to
destination.

To animate the results on the virtua map, each of the nodes in the graph is tested to
see if it belongs to the path just found. Those that pass the test are represented in a
different colour. The same is done to edges by successively taking two adjacent nodes
from the path at atime and comparing them with the two end points of each edgein the
graph.

Buildings in the city are not part of the connected graph. They are nodes of ther
own type and they are not linked to each other in anyway. Therefore, a this stage,
looking for a path between two buildings will result in no answer. To solve this
problem, we map each building with the nearest graph node to it (pavement node or
road node, depending on the graph we choose to use). Thisimage node represents the
building front side or entrance, and looking for a path between two buildings is reduced
to finding the path between their entrances.

Fgure 74bdow shows an animation of the optima path found between two different
buildingsin the city using a pavement graph.

This graph r

Figure 74: Finding the optimal path between two different pavement points.

126 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

Visiting a Series of Places

To vigt a number of different places, different sdected points and dl reative
information (including names for buildings) are stored in a queue Structure so that the
order of selection is preserved. Each pair of selected nodes is then considered in turn
and the sub-problem is solved as in the previous section.

The figure below shows the optimd path found to vigt five different buildingsin the
city usng the pavement graph.

This graph

Figure 75: Visiting a number of different places using a pavement map.

Moving to the Nearest Place

A vidtor, being a some paint in the city, might want to vist the nearest pub for
ingance. To find a solution to this problem dl pubs in the city must firsly be identified.
The paths and their costs to get to them must then be calculated and the one with the
least cost is then chosen.

Buildings in the graph are represented as smple MAVERIK objects whose
semantics are stored in the building database. The building database maps ‘names to
building objects and can therefore be used as intermediate means to locate dl buildings
that hold the requested ‘name’ in the city.

Given the name of the building the user wants to visit, a smple search through the
building database identifies different indices at which buildings of that name exist. These
indices can then be used to retrieve the position vectors of the corresponding objects

September 1999 127

eSCAPE eSCAPE systems, infrastructures and techniques

on the map, which are then compared with al building MAVERIK object matrices in
the virtua map. The results can then be visualised on the map, by changing the colour of
buildings object found to match. Figure 76 shows an example of this.

This graph represents Dijk

Figure 76: Locating all clubs in the city map.

Knowing the current position of the user, the path of each of the identified candidates
can be found. The path with the least cogt (distance) isthen chosen, and the destination
of the path is defined to be the nearest requested building. Figure 77 follows the results
obtained from Figure 76 above.

128 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

This graph represents Dijkstra’s city

Figure 77: Choosing the nearest club. The club to which the path has the least cost.
Travelling the Path

In the previous sections the virtual map has been our centre of attention. We discussed
ways of finding and visudisng optima paths around the city using the graph it
represents. In this section we shal see how the results obtained so far can be used to
navigete the cityscape effectively.

Each graph (map) node has its invisble counterpart in Dijkstra’s city whose exact
position can be found. This makes restricting moving aong a predefined peath rdaively
easy to redise, ancethe pahisgivenintermsof alist of nodes.

Dijkstra is supposed to walk or drive the city vigtors to their chosen destination.
He is an avatar and his walking movements depend on two parameters, speed and
direction. The speed can be set to any initid congtant vaue. Obvioudy, if Dijkdrais
driving he goes fagter than when he is walking and so does the user navigetion.

Both the cityscape and its associated virtual map are rendered using aMAVERIK
infinite rendering loop that generates a new frame each time around. Dijkdtra is
rendered as part of the city and at anytime he exists a some position in the frame being
rendered. In each frame, rendered a some time vaue T, Dijkstra is time-stamped and
his location is marked. When the next frame is being rendered a time vaue S
Dijkgra’'s new location is caculated. Knowing the difference in time between the two
frames (S T) and Dijkstra's speed, it is easy to determine the distance by which
Dijkgtra should have moved from his old location. All is needed now is to st the
direction that directs the move.

To redtrict Dijkgtra to follow the chosen path from source to destination, starting at
the source node, the direction should be set according to the edge determined by two

September 1999 129

eSCAPE eSCAPE systems, infrastructures and techniques

adjacent nodes in the path. This direction together with the distance by which Dijkstra
should move indicate the exact place where he should be placed in the new frame.
Moving dong the list of nodes (the path) and until the destination node is hit, the
direction vector is caculated as the vector subtraction of the last node visited from the
node about to be vigted. This is guaranteed to work because al edges in the path are
sraight lines and can therefore be specified as vectors.

However, if the frame rate is dow or Dijkstra's speed is very high, there is a
chance for Dijkstra to miss his route. This happens wherever there is a change of
direction such as corner nodes where the direction changes after the new postion is
caculated which results in loosing track of the route. To overcome this problem alook-
ahead test for corner nodes should be performed and when the new position is found to
go past acorner node, it is set to be the position of that corner node.

Thecity vigtor'slocation is represented by the eye point and the direction he/sheis
looking is given by the view point. To enable the user to have automatic navigation of
the optima peth, the eye point and the view point vectors in the new frame should be
st respectively to Dijkgira's postion and his direction in the old frame. This alows
Dijkdra to aways be in the user’s sght and give him/her the impression that he/she is
following Dijkstra

Change of Route

At any stage once the path navigation starts the user may wish to change his destination
or may decide to stop a some place in the city. The user should not be tied with the
planned trip and should be alowed to change his’her plans as desired.

One way of satisfying these requirements is to keep track of the user’s postion at
any time and test if any new destinations have been sdected. The new source node is
given as the nearest node to the current user’s location. The path from the new source
node to the new degtination is then found and animated in the same way as explained
above.

Results and Conclusion

‘Virtud city Guide 1' was intended to solve the basic navigation problem effectively
and it certainly did so by enabling the user to travel between different placesin the city
following the best possible routes.

All user actions are initiated from either the pavement map or the road map.
Starting & some point in the city the user interactively specifies a destination or a list of
successve dedtinations. ‘City Virtud Guide 1' enables the user to be shown the path
he/she is travelling on the map as well as higher pogtion reative to the whole city and
the path being travelled.

The figures below demongrate a wakthrough of the sequence of different actions
taken when navigating the path found using a pavement map.

130 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

This graph represents Djj

Y

|
y b

|
1

Il Dikstal Hello,
Yol @

Figure 79: Dijkstra standing facing the user (eye point) near the source node.

September 1999 131

eSCAPE eSCAPE systems, infrastructures and techniques

Dijkstra:
Il show you the best way to get

Figure 81: Dijkstra and the user travelling the path found.

132 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

Virtual City Guide 2

The virtud city guide designed and implemented as discussed in the previous sections
provides atool to effectively navigate Dijkstra s city. Theinitia problem was trandated
into a least cost path graph task, and the traditiond Floyd Algorithm was used to find
optima paths around the city. However, this agorithm operates only on static graphs.
The graph that describes the city is constructed once the city is generated and remains
datic. Assuming the city does not change, the graph will aways be reliable. Altering the
city environment may introduce new condraints that make the graph no longer reiable
unless the changes are aso reflected on it. In this chapter we discuss different ways of
introducing such obstructions, and methods of detecting them and dedling with them
efficently.

Obstruction Introduction

Introducing obgtructions is one way of modifying the exiging city and graph
environments. Adding an obstacle effectively cuts links between certain parts of the city
and certainly affects a number of paths stored in the shortest path database. This should
be peformed by the user interactively by placing an obstacle any time (barrier)
anywhere in the city. A ample way of doing this is to convert any of the nodes to an
obstacle. This has the advantage of ensuring that obstacles lie on one of the paths as
well as making it smple to locate a particular obstacle. We keep track of the obstacles
by flagging the affected node as suspended. Thisis shown in Figure 82 below.

Add obstacle and
mark the node as

Suspended.

Figure 82: Adding an Obstruction.

A path between two nodes is determined initidly by consulting the shortest path
database. Each of the path’s constituent nodes is checked to seeif it belongs to the set
of suspended nodes. In case the path has at least one suspended node, it is ruled out
and an dternative needs to be found.

September 1999 133

eSCAPE eSCAPE systems, infrastructures and techniques

One-way Street Addition

As described previoudy the graph congtruction method results in an undirected graph
which can aso be viewed as a graph in which dl edges are bi-directiond. The
advantage of this is that one is able to deduce the optima path from A to B knowing
the optimal path from B to A. One being the reverse of the other. However, this
amplicity does not reflect a redidtic environment, particularly in the road graph verson
where some streets could go only one-way but not the other. Allowing one way streets
effectively means that some edges are dropped from the origind greph sructure.

Consequently, the optima route followed from A to B is not necessarily the reverse of
the optima route from B to A.

One way of setting two-way streets to be one-way isto do so, on arandom basis,
when the graph information is being extracted from the city. The graph database
generated then contains within it one-way dreet information and the shortest path
database takes that into congderation as well. The main advantage of this besdes
amplicity is tha everything is sat beforenand and the graph remains datic and
unchanged once formed. However, this limits the user’ sinteraction and control. On top
of that, the street random setting may result in deadlocks in dtuations where an
intersection point has a number of in coming edges but no outgoing ones.

A better option is to dlow the user to modify the graph. In the same way the user
can interactively block paths, he/she can dso set dtreets to be one-way or the other.
This broadens the user interaction, freedom and control. The graphisinitialy generated
in the same way described in chapter 4 where al dtreets are available both ways, by
default. The user can then, at any time, set any street of hisher choice to be one-way in
the direction preferred. The main issue here is that the database of al shortest paths that
dores the shortest paths in the initid graph become no longer condgtent with the
modified graph verson. Therefore, the shortest path between two points, as stored in
the path database, may not be available any more and an dternative needs to be found.

A dreet in the road graph verson is a series of nodes that begins and ends at a
corner node inclusive. To identify the street that needs to be set one-way its two end
points need to be detected. It is possible for the user to explicitly state the two end
points. However, if the user can state only one of the intermediate points thet lie in the
Sreet, it is possble to find the two end-points thet define it. Thisis a better technique as
it minimises the amount of work required by the user. Once the two end-points are
found, al the edges that match the direction chosen are kept and al others in the
opposite direction are marked unavailable.

The path between any pair of nodes is initidly found exactly in the same way as
before by consulting the path database. When the path is found, each of its condtituent
edges is checked whether it is flagged unavailable or not. If the path has at least one
unavailable edge, it is ruled out and an dternative needs to be found. This is described
in the next section.

A graph can be modified even after the peth isfound and the travelling begins. An
obstacle may be added or a street may be converted to one-way after the path
travelling has sarted. Therefore each of the above checking operations is performed

134 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

when the path is retrieved for the firgt time as wdl as when each timearound the
rendering loop and a path is being travelled. In the latter, not the whole path is
checked but only the part not yet travelled. In other words, only obstacles (or one way
sreets) that lie on the path and ahead of the navigator should be reported. Changes that
do not affect the remaining route to be travelled should therefore be neglected.

Finding an Alternative Path

Allowing the user to introduce locd changes to the origind graph makes the graph
dynamic and evolving. This results in some of the paths stored in the shortest path
database being no longer available. If a path is detected to be ruled out for any of the
reasons explained above, the best possible aternative needs to be found to enable the
navigation process.

Unfortunatdy, traditiond grgph adgorithms such as Floyd's only operate on datic
fixed graphs. There is no incremental verson of Hoyd's Algorithm that enables us to
successively retrieve optima dternatives to a given path, having done the computation
once.

Clearly one straightforward option is to re-compute the shortest paths from scratch
whenever the graph is modified. This involves a modifying the graph database, passng
it to Hoyd's Algorithm and storing the new obtained peths in the path database.
Although this solves the problem, it is time consuming and therefore not effective. For a
large graph with a large number of nodes and edges, the re-computation process is a
matter of minutes. Clearly we do not want the gpplication to stdl every time the grgph
gets atered.

By examining the basic idea of FHoyd's Algorithm, one can notice that the optimal
path P from A to B and through any k is congtructed of the optima path from A to k
and the optima path from k to B. One can deduce that if P is blocked at some point,
there could be some other intermediate node m such that the combination of the optimal
path from A to m and the optima path from m to B, where both sub-paths are not
blocked, produces an optimal adternative to P.

All the graph nodes are candidates to be m. FHoyd' s early computation stored in the
path database can be used to find the optima paths from A to each m, and from each
m to B. The two sub-paths, for each possble m, are tested for availability and if they
are clear of any obstacles they are merged together into a single path. This process
could lead to a number of dternative paths because the large number of possble
intermediate nodes. To choose the best dternative out of the ones found, the cost of
esch is caculated and the one with the least cost is chosen.

A sudy of this proposed solution shows that it aways finds the best dternative
possble if one exigts. On top of that, it solves the problem only for the affected path
and therefore avoids a codtly re-evduation of dl-pairs shortest paths in the atered

graph.

September 1999 135

eSCAPE eSCAPE systems, infrastructures and techniques

Results and Conclusion

‘Virtud City Guide 2 extended ‘Virtua City Guide 1' by upgrading the city and graph
from gatic environments into non-fixed dynamic environments. This was achieved by
enabling the user to interactively edit new condraints into Dijkstar’s city via the graph
that representsit. The user could close roads of his’her choice by placing an obstacle in
the way. Additionaly, the user can set roads, which are by default two-way, to be one-
way.

‘Virtud City Guide 2 dso provided ways of detecting inconveniences and
reporting them to the user. Beddes a new dgorithm was developed to ingtantly
cdculate optimd dternative paths in order to avoid re-evauation of dl-pairs shortest
paths that could be extremely codlly.

Figure 6.3 below shows how an aready calculated path between two points has
been interactivdly closed and this is interpreted by placing a barier a the
corresponding placein the city and that stops the travelling process as figure 6.4 shows.
Figure 6.5 shows how the best dternative path to the first one was caculated and
animated. This new aternative path is the one to be travelled and this is done in the
same way asillugtrated previoudy.

Figure 83: Placing an obstacle in the way makes the path no longer available.

136 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

Figure 85: Finding best alternative possible to the same destination.

The User Interface

Early planning identified that an important principle of the user interface design is that
the user should dways fed in control of the gpplication, rather than feding controlled by
the agpplication. It dso reveded that providing a sense of stability and consstency
makes the interface familiar and predictable. In this chapter | shdl throw some light on

September 1999 137

eSCAPE eSCAPE systems, infrastructures and techniques

the development of a grgphicd user interface and a voice recognition interface to
complete the gpplication. | shal address the main design and implementation issues.

The Graphical User Interface

The Graphical User Interface should be smple (not smpligtic), easy to learn, and easy
to use It must adso provide access to dl functiondity provided by the virtud guide
gpplication. Maximisng functiondity and maintaining smplicity work againg each other
in the interface. Hence, balancing these objectives is needed.

In order to help users manage complexity the interface uses progressive disclosure.
Progressive disclosure involves careful organisation of information so that it is shown
only at the gppropriate time. By "hiding" information presented to the user, you reduce
the amount of information to process. For example, clicking a menu displays its
choices; the use of didog boxes can reduce the number of menu options.

XForms introduced could be combined with MAVERIK to address the above
Issues and moderately meet their requirements. XForms provides a library whose main
notion is that of a form. A form is a window on which different objects are placed.
Such aform is displayed and the user can interact with different objects on the form to
indicate his’her wishes.

Implementation and results

XForms library provides many different classes of objects, like buttons that the user
can push with the mouse, diders with which the user can indicate a particular sgtting,
input fields in which the user can provide textud input, menus from which the user can
make choices, etc. Whenever the user changes the state of a particular object on the
form displayed the gpplication program is notified and can take action accordingly.

However, usng MAVERIK it is not very straightforward to check and report
Form Events. The reason is that MAVERIK rendering of the virtud city and the
corresponding map goes around an infinite loop generating a new frame each time
around. Standard checking as well is a continuous process that is done in the same way
and it is not possble to have two independent infinite loops. This can be solved by
writing a specid function to check for events and let it be cdled insde the main
MAVERIK loop. The form objects States are queried while the new frame is being
created and any changes are reported and queued. The gpplication program interacts
with the form using a number of calback routines that are called whenever an event is
picked up. Therefore, actions are triggered using the form and the results of any actions
carried out are visuaised usng MAVERIK.

Description

The figures below show the interface form and the different objects contained within it.
Different actions associated with the form objects are described in the table below.

138 eSCAPE Deliverable 5.1

Chapter Six

Way finding in the virtual cityscape

XFORMS INTERFACE PANEL

Object Label Object Type Call-back Action

Choose Graph menu Enable the user to choose to be shown either a road
graph or a pavement graph.

Alter Graph menu Enable the user to modify the displayed graph. The
choice sets the functionality of the middle
mouse button.

Clear all Button Returns to the original unmodified graph

Find shortest way Button Animates the lest path between the pair of nodes
selected or a series of them.

Take me there now Button Start travelling the path.

Next place Button Visit the next place in the series of places selected.

Find an alternative Button Find an alternative path between source and

destination.

Where am |?

Active Button

Once activated, it keeps track of where in the city the
navigator (user) is and the nearest building to
him/her.

Take me to the nearest Type-in box Takes a building name as input.

Speed Slider Set Djkstra’s speed (as well as user’s navigation
speed)

Exit Button Exit application.

MAVERIK Virtual Environments (city & map)

Right Mouse Button

Up and down navigation

Left Mouse Button

Left and right navigation

Middle Mouse Button

Object selection: for source and destination selection
as well as graph modification.

Figure 86 Interface objects and their associated callback actions.

September 1999

139

eSCAPE eSCAPE systems, infrastructures and techniques

Choose Graph Alter Graph
(e (oo @
- _ : Disabled (none)
Close path
Oﬁg. way ==

fwa ways <=

Take me to the nearest:

Speed: | 0.00 |mijm

Choose Graph Alter Graph
Pavement kap | @m@m| (Disabled {hone) —)
' Aoad Map

Pavement Map

Take me to the nearest:

Speed: | 0.00 Jmilm

Figure 87: The XForms Interface Panel.

Speech Control

The Marconi Macrospesk must be integrated with the existing system to add voice-
input facility. Macrospesk is programmed to alow voice activated control of the city
guide implemented. The Macrospesk program defines the list of spoken words which
may be used during recognition, the syntactic rules which govern their concatenation
and the output from Macrospeek in the event of their use.

140 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

The word list consgts of the set of mandatory vocabulary used to perform any of
the actions dlowed using the XForms interface pand introduces in the previous section.
The table below shows the vocabulary needed for this purpose.

It should be noted that most desired actions are matched with only one command
word in the list aove. This has an advantage in that in most cases only one possble
choice is available to the recogniser a any time, thus improving recognition accuracy for
a co-operdtive spesker. It dso has the advantage of smplifying the application syntax
rules since not many words are required to be followed by others. Consequertly, it
prevents invaid word combinations from generating erroneous responses. The syntax
rules are presented in the diagram below.

Word Syntax Class
1 Exit
2 Road_Graph
3 Pavement_Graph Single command
4 Obstruct
5 Two_Way
6 One_Way_ One_way
7 Left
8 Right Direction
9 Clear
10 | Next
11 | Take_Me_There
12 | Slow_Down Single command
13 | Speed_Up
14 | Stop
15 | Find_ Find
16 | Nearest_ Nearest
17 | Shortest_Path
18 | An_Alternative Request
19 | Post_Office, Coach_Station, Club, Park, ...etc. Building name

Figure 88: The list of possible voice-input vocabulary

September 1999 141

eSCAPE eSCAPE systems, infrastructures and techniques

Silence
Single Command One-wa Hind
Nearest
Direcjjon Request Building name
> <
Accept

Figure 89: The Speech Syntax Diagram.

Implementation

Before the recognition proceeds, Macrospeak needs to be trained. Training in the
process which provides Macrogpesk with a spoken sample of each word in the word
list. Each of the words is uttered in a clear postive manner. These templates are saved
in a recognisable format by Macrospesk. They are used as reference patterns and are
definitive verson of each word.

Once programming and training are complete, Macrospeak can be connected to
the application to enable receiving voice input from the microphone and intdlligent
interaction with the virtud guide system. Cdl-back function for each command input are
defined exactly in the same way they are defined usng XForms to perform the desired
actions.

Feedback to the User

At any stage while the user is exploring the city, he/she expects to be given enough
feedback on actions taken and changes occurring in the environment he/she is
exploring. For ingtance, the city navigator expects to be given an estimate of the cost of
his’her journey before he/she startsto travel as well as after the travel begins. Besdes it
will be an advantage for the user to know wherein the city he/sheis.

142 eSCAPE Deliverable 5.1

Chapter Six Way finding in the virtual cityscape

Effective feedback is timely, and should be presented as close to the point of the
user’'s interaction as possible. It should so communicate details that distinguish the
nature of the action. Nothing is more disconcerting than a dead screen or an
unresponsive interface.

The above can be satisfied by providing messages for the user about his current
location in the city, the path he/she is travelling and the cost updates. The cogt is given
in terms of distance and time left for the navigator to get to destination. Clearly, while
the digtance is fixed, the time is estimated considering the current navigation speed and
varies as the speed (of Dijkstra and therefore the user) changes.

This could best be done usng MAVERIK strings to display messages, because the
gates and/or values of mogt of the above parameters change with every new frame
rendered. Messages could be displayed on a separate frame that gets updated each
time around the main rendering loop to reflect any changes. Figure 7.5 shows an
example of that.

Theatre

Cistance left to get there: 41142 ms.

Time left to get there:
Time

You are right ne;

Figure 90: MAVERIK Frame to give feedback to the user. This includes the path he/she is
travelling, its cost and the user’s current location

September 1999 143

Chapter 7
Crowd Control: populating the virtual

cityscape

David Smith, Adrian West and Steve Pettifer
The Universty of Manchester

Navigating around virtual cities can feel like a lonely experience, as usually there is only one
individual, or maybe a handful of people, inhabiting it at any one time. As the technology for
networking such cities improves, it may be possible to fill cities with hundreds, maybe
thousands, of real people, but until such time another solution needs to be found. The most
obvious solution is to create simulated people to wander around the city and get on with their
daily lives, and this is the main aim of this project, going by the name of ‘Crowd Control’.

j
/

s

Figure 91: The cityscape, without and with crowds

One of the main parts of the cityscape project, as has been mentioned above, is to try
to find naturd ways of integrating information into virtua worlds. For instance, onething
that might be required isto draw the user’s attention to various objects of interest within
the world. There are savera ways that this could be done. Possibly a big arrow could
be put on top of any such objects, or they could be marked in bright colours, made to
produce various noises, or maybe the user could be given a virtud map with such
objects marked on it. However these solutions can look out of place in an otherwise
redistic world model. A more subtle way of drawing attention to these items could
make use of the crowd smulation — smulated people passing nearby could stop and
look at the objects, with crowds of people congregating around the most interesting
items.

There is a third ‘red-world’ gpplication for the crowd smulation and that is to
attempt to predict the movement of crowds in as yet unbuilt cities. Assuming that the

September 1999 145

eSCAPE eSCAPE systems, infrastructures and techniques

samulation is accurate enough this could be a vauable tool for town planners, dlowing
them to spot potentia problem areas before construction work is Sarted.

Interactive Frame Rates

One important feeture of the Maverik sysem, as with most VR sysems, is that it
atempts to create worlds that run at sufficiently high frame rates for red-time
interaction. It is generdly reckoned that arate of at leest 10 frames per second is the
minimum for smooth movement. As aresult of this, an important festure of this project
isto find fast and efficient ways of smulating crowds, thereby leaving as much time as
possible for drawing them on the screen. The project adso has to be scaable, so that
increasang the number of people in the smulation, or the Sze of the city, does not
exponentidly decrease the frame rate. Throughout this document there are mentioned
severd different waysin which thisis achieved.

On-line references

There has not been very much research, to date, in the fied of red-time crowd
smulation, but there are a few papers and other resources available on the Internet.
Some of these, such as the Legion project
(http://ourworld.compuserve.com/homepages’G KEITH STILL), are desgned to
accuratdy smulate the movement of crowds, but not in red time. This is useful for
designing or redesigning areas through which crowds have to move, but is not redly
relevant to this project.

There are dso commercial packages avalable, such as the Rampage system
(http:/Amww.anisci.com/RAMPAGE/rampagel.htm), which are designed to modd
large groups of animas. This could be customised to create animations of crowds of
people, and does have a ‘gods system, very smilar to that used in this project.
However, like the Legion project, this is not designed for red-time smuldion. In this
caxe it is designed to smplify the creation of *herd” animations (such as the sampede
seen inthefilm ‘The Lion King').

Of more relevance to this project are papers by Prof. D. Thalmann (Thamann,
1998) and by D. Thamann and R. Musse (Thadmann & Musse, 1997). Both of these
look at the inter-relationships between different crowd members, something that has
been only lightly touched on in this project (which concentrates more on the movement
of the individud). The second paper aso looks at ways of detecting potentid collisons
and avoiding them.

146 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

On Screen

Figure 92 : The simplified cityscape and its inhabitants

This section describes what appears on screen once the program has loaded. It aso
describes how the city appears to operate and gives details about the interaction that is
possible with the world.

Objects in the City

A farly ample representation for the city was chosen, to alow a reasonable frame rate,
and a0 to leave extra time to spend on the more important Smulation aspects of the
project. The city used in writing the program is based on a 25 by 25 grid. On screen
each grid square is ether a flat square - which represents ether grass, pavement or
road — or a box, representing buildings. Different colours are used to differentiate
between ground types, and there ae adso a number of randomly placed trees on the
grass squares.

The people inhabiting the city are smply represented as cylinders with a single red
line, which show the direction they are facing (see fig 4 above). Again thisis mainly due
to the problems of getting a good frame rate with complex models such as shown in fig
2, but dso it asmplifiesthat part of the code.

September 1999 147

eSCAPE eSCAPE systems, infrastructures and techniques

(@) (b)

Figure 93: A bus arrives to pick up a queue of people, and a ‘juggler’ attracts attention
outside a doorway

Other objects around the city include buses (red boxes), doorways (coloured
rectangles), bus-stops (tall, thin boxes) and jugglers (cylinders with animated spheres).

People Movement

As time goes by people appear in the doorways of the houses, denoted by the green
coloured rectangles. These people then proceed to walk aong the pavements, changing
direction when they reach corners, and crossing roads at pre-defined places. As the
people walk aong they move out of each other's way to avoid colliding. They dso
avoid walking through buildings.

(b)

Figure 94 : (a) Walking along a street, and (b) avoiding collisions

When they first set out, al of the people have a least one destination in mind, and thisis
where they initidly head for. The different types of goas can be easily identified as the
people have been colour coded to indicate their destination — red for bus-stops, green

148 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

for parks, grey for offices, blue for shops and magenta for a friend's house. As the
people wander about the city, other objects may distract them, in which case they will
go and look at these new objects, before continuing on to their origind destination.

Whether it was their origind god, or something that distracted them on the way, the
person will eventudly arrive at an object of some kind. When they arrive a an object,
their next action depends on what type of object it is. For doorways, people disappear
into them, possibly re-appearing later. Bus-stops cause people to queue up until a bus
arrives for them to get onto. Jugglers cause people to stand around and watch them for
abit. Finally, at parks people wander around and admire the scenery.

Interacting with the world

Although most of the smulation runs on its own accord, there are a few ways of
interacting with it as it runs. Mogt obvioudly it is possble to move around the city and
view it from any pogition. To get closer to the action it is possible to select an individud,
and the viewpoint will then follow them until they leave the map (eg. when they enter a
building or a bus) or they are desdected. It is dso possble to turn both the collison
avoidance and digtractions on or off. The former causes people to pass through each
other and the latter makes sure that they only go to their initid destinations, and are not
digracted by anything else on the way. The movement speed of the people is dso
adjustable. This does not affect any time spent waiting at agod, but merely reduces the
timeit takesto get between different destinations.

An on screen display can be brought up, giving various bits of information about the
current sate of the smulation, such as the number of people in the map, the frame
rendering time and the destinations for the current avatar (if oneis selected).

One find, less serious, way of interacting with the world is the ahility to ‘shoot’

people, by pointing at them and pressing ‘s . The person fdls over and nearby people
move over and cluster around them, in much the same way they do with the jugglers.

Behind the scenes

External files

There are three externd files that are needed to make the program work. The first of
these is the city grid file, and this contains the definition of the different areasin the city
(erther grass, pavement, road or building). The second file type is the junction file which
ligts the pogtions of dl the invisble navigation junctions in the city, and the connections
between them. The find externd file is the objects file, which describes dl of the
different objects to be found in the city (such as the doorways and buses).

Detalled information about al the file types can be found in gppendix A & the end
of this document.

September 1999 149

eSCAPE eSCAPE systems, infrastructures and techniques

Main Data Structures

The city is represented by a 25 by 25 array, with each entry in the array containing an
integer that describes the type of ground in that square. Another array of the same size
stores lists of people who are in each square a any one time. Thisis used to optimise
collison detection, and is described in detail later in this document. There is dso an
aray that contains dl the junction points, with their position and a list of adjoining

junctions, and a separate structure which stores the quickest route from one junction to
another. The quickest route is ored in an n by n aray (where n is the number of

junctions in the city), which ligts the next junction to which the person should travel to
reach their destination junction. This array is generated using Dijkgtra's agorithm (see
previous chapter).

Junctions Junction Distractions
Array Data List
List of peoplethere —1_—1 Position
e I e = N =L -
1. Adjoining
T T Junctions
City Grid ‘Au - _ i
Distractions

Figure 95: (a) grid square inhabitation lines, and (b) junctions data structure

All of the objects in the city (except for decorations like the trees) are stored in an
objects data sructure. This contains information like its pogtion, distraction value and a
pointer to the Maverik object that represents it. There is aso an optiona sub-structure
off this that contains information relevant to people objects, such asalist of godsand a
movement speed. This alows people to be stored in the same data structure as al of
the other objects in the city, which, amongst other benefits, avoids having a separate
data structure, and alows people to be used as digtractions. The god list sub-sructure
includes information such astype, podition, object, and walit time.

Objects Object Person
Array Data Data (LSIOS?S
— | Person Gods

- Type || Direction
L Distrctn.| ; | Colour Godl 1
Position| ; | Speed -
L ' God 2
B : God 3
(Optional)

Figure 96: Object data structure'

150 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

There is a limited number of people in the city a any one time (about 200 people
seem to fill the city and Hill giving a reasonable frame rate, see section 3.4 for more
detals). This prevents the frame rate from getting too low, and aso alows the people
to be stored in an array, which is easer to index and move through than alinked list.
Any extra people wanting to get into the city are added to awaiting list from which they
are removed when a space is found.

Full details about these main data structure can be found in gppendix B at the end
of this document.

Updating Objects

Before each frame is drawn every object in the city is updated. The actud update is
dependent upon the type of object.

Busses

Buses each have aligt of pogtionsto travel to. They sart out at their initid podtion
and then head for the first postion on their list. Asthey travel dong their orientation is
cadculated from their current podition and their goa position. The list of positions wraps
around, with the last entry pointing back to the firgt entry, but, to distinguish it, the last
entry is marked with a negative y-vaue (as the bus moves dong flat ground, the y-vaue
is not otherwise used). The bus has a datus vaue that is used for two different
purposes. If the bus is traveling from the last point, back to the first point, this status
vaue is st to ‘-1', to indicate that the bus is not to be drawn. When the bus arrives
back at the first point, the statusis reset to ‘0" and the bus is drawn again. The second
use for the satus value is when a bus arrives at a bus-stop. If there are people waiting
to get on the bus, then thisvaueis st to the number of people waiting. The bus will not
move until this value has dropped back to ‘0’ again.

Bus-stops

Bus-stops look for passing buses for people to get on to (this is a more efficient
solution than trying to add a new ‘waiting for bus dtate to the people at the bus-stop).
When a bus is spotted, the bus-stop looks through the list of people waiting there and
randomly sends about 2/3 of them to the bus (by adding the bus to the front of their
god lig). The busisdso told how many people to wait for, and will not move off until
that many people have arrived & it. The rest of the people then have their positions
updated, to make sure that the queue moves up to the bus-stop again.

Doorways

Each house doorway has a wait time associated with it. If that time has eapsed
then anew person is generated, and the wait time is st to:

current time + random nunber (0.0 < x < 1.0) * 10000

September 1999 151

eSCAPE eSCAPE systems, infrastructures and techniques

maxi mum nunber of people * average avatar speed * creation
rate

This attempts to match the number of people being generated, with the number of
people being removed and the number of ‘person-dots available. The ‘creation rate
decreases as the queue of people waiting to get into the city increases, to prevent the
queue from getting too large.

When a person is generated their type is chosen a random (either going shopping,
going to work, getting a bus, vidting a friend or vigting a park), and their colour,
digractibility and god ligt are st to rdevant values (see table beow). The different
types dl have the same probability of being chosen (except for ‘getting abus, which is
less likely, due to limited space in the bus-stop queues), but a datistical bias could
eadly be introduced. The newly generated person is then added into the waiting ligt,
which is ordered according to creation time (this alows people to be generated with a
delay, for example, when a person goes into a shop there is adelay before they are ‘re-
generated’ by the shop doorway).

Goal Type Colour Distractibility Goal(s)
Shopping Cyan 0.5...1.0 shop doorways
Work Grey 0.0...0.2 office doorway
Bus Red 0.0...1.0 bus-stop
Friend Magenta 0.0...1.0 house doorway
Park Green 0.4...0.6 park
Jugglers

The positions of jugglers juggling bals are updated. The jugglers themsalves do not
move, due to problems with moving distractions.

Parks

Parks are not updated at dl, as they do not change during the time scale that this
project works on.

Updating People

When the program first sarts, dl of the ‘people-dots in the city are initidised to ‘not
exiging'. In this ate they do nothing, except wait for a person to appear on the waiting
list. When a person appears on this list, their details are copied across into the empty
dot, and they are removed from the waiting list. The object representing the person will
then gppear in the city and start to move through the list of goas that they have been
given.

152 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

Moving from goal to goal

When a god for a person is first set the nearest junction to the goal is worked out
(by smply comparing the distance to dl of the junctions and taking the smdlest), and
stored dong with the rest of the god details. When the person firgt *uncovers' this god
they perform a few checks. Firstly they check to seeif they have adirect line of trave
(LOT) to the god. This means that they can go to the god directly without passing
through any buildings, or arbitrarily crossng any roads. If they have a LOT then they
will go directly to the god; otherwise they will navigate via one or more junctions.

The next check they make (assuming no direct LOT) is to find the nearest two
junctions to their current position, and then choose whichever of thoseis closest to ther
god asthefird junction to travd to. Initidly the nearest junction to the current position
was dways used, but this resulted in at least hdf of the people going the wrong way out
of their front door, and then turning around and walking back the way they came.

Once the initid junction has been chosen the person will add this to the front of their
god lig and then move towards it. To prevent the people from dl unnaturdly travelling
down the centre of the pavements, each person actudly heads for a point a random
digance away from the actud junction point (dthough Hill well within the same grid
square). Upon reaching the junction they once again check the LOT. If they can travel
directly to their god, then they do 0, otherwise they use the ‘quickest route’ lig to
work out which junction to go to next. If, for some reason, the person arrives at the
nearest junction to their god and till does not have a LOT they will go directly to the
god anyway. This either indicates that the god isinsde a building/on aroad, or that the
nearest junctionis on the other sde of a building/road. In this case the junction list is not
extensive enough and should be manualy updated.

A D

o— —0 o—o— —0

Figure 97: (a) Person A, wishes to get to object B. They first find the junction nearest the
goal — C — and the first junction to travel to — D. (b)

Arriving at a goal

When a person arrives at a god, their next actions depend upon the type of god
that they have arrived a. The smplest god is the junction, which Fes aready been
discussed above and the rest of them are discussed below.

September 1999 153

eSCAPE eSCAPE systems, infrastructures and techniques

Doorways

When a person arrives a a doorway anew god is added to the top of their god list
that removes the person from the map and resets the dot to the initid ‘waiting for anew
person’ state. In the case of a shop doorway the details of the person are first copied
onto the waiting list, with a suitable delay before they are re-cresated. This dlows the
person to regppear from the shop and then go on to other shops, before returning
home.

Jugglers

When travelling to a juggler the person stops a specified distance away from the
juggler (the distance is specified in the objects file, and is stored in the objects data
sructure). They then stand and watch the juggler, for a time which is caculated from
their own digractibility vaue (the higher it is, the quicker they will move on) and the
juggler’s digraction vaue (the higher it is, the longer they will stay). Further people
ariving at the juggler can often push earlier people away, so each person regularly
checks how far away they are. If the distance is too great they will head back towards
the juggler again and then continue to walit for the rest of the time (they do not calculate
anew waiting time).

Parks

When a person arrives a a park they are given a random number of new gods,
conssting of random positions to vidt in the park and random times to wait a each of
these locations. This could possibly be improved on, but it gives a rough impresson of
someone exploring a park.

Bus-stops

Assuming the queue a the bus-stop is not dready too big (in which case people
samply move on to their next god), people ariving a a bus-stop are given two new
gods. Thefirgt isto move to a position specified by the position of the bus-stop and the
number of people at the stop; this dlows a fairly evenly spaced queue of people to
form. The second isto stop and wait. The people will then wait until they receive further
ingructions (see earlier notes about updating bus-stops).

Buses

People only head towards buses when told to do so by a bus-stop. When they
arive a the bus, they tdl the bus that they have arrived (which then decrements its
‘number of people to wait for' counter) and then have a ‘remove from map’ god
added to the front of their god list. There is currently no way for people to be
generated by buses, so once a person has got onto a bus, they are permanently
removed from the Smulation.

154 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

Distractions

All objectsin the city can have a digtraction value. Thisis used to work out how likely a
person is to (temporarily) put asde their current goals and head towards them. To
prevent each person from checking for being distracted every frame (which would be
computationdly very expensive), people only check for being distracted when they
arive a ajunction. When an object with a distraction vaue greater than zero is loaded
into the city a line of sght (LOS) check is performed againg dl junctions within a
certain radius. This radius is equa to 60 plus 100 times the object’s distraction value,
s0 the more distracting the object, the bigger the radius searched. If the object can be
seen from the junction, then it is added to a ligt of ‘locd digtractions stored by the
junction. This means that when a person arrives at ajunction, they do not have to check
againg dl objects in the city to find the nearby ones that they can see. Instead they
amply go through the list &t the current junction, checking for being distracted by any of
those objects, safe in the knowledge thet dl of those objects can be seen from their
current pogition.

Figure 98: Object A’s distraction value means that it affects all of the junctions in the given
radius. Junctions 3 and 6 are too far away and ignored. Junction 4 cannot be seen, so is
ignored. However, junctions 1, 2 and 5 add distraction A to their distractions lists.

The actud check for being digtracted is smply done by comparing the digtraction value
of the object, the digtractibility value of the person and a random number. If the person
IS distracted, then the object is added to the front of their goa list. The person then
travels to the object with the norma LOT checks and junction navigation. To prevent a
person from continudly leaving an object and returning to it (having been re-distracted
at the firg junction they reach), the last object visited is stored and that object ignored
when checking for being distracted. The person’s didtractibility is aso reduced each
time they are distracted, to increase her chances of actudly reaching ther find
destination.

Updating a person’s position

Once their current destination has been chosen the person has to travel to get there.
This update occurs every frame, and is Smpler to compute than the full route decisions
which occur at junction and when ariving a other destinations. Firstly the current

September 1999 155

eSCAPE eSCAPE systems, infrastructures and techniques

direction the person is facing is cdculated (Smple vector dgebra using their current
position and their destination direction) and stored. The person’s speed is multiplied by
the time since they were last updated. If this distance is greater than the distance to their
destination, the person is moved directly to their destination, otherwiseit is multiplied by
their direction vector and added to their current position.

The next thing to be caculated is any collison avoidance with other people in the
city (assuming the user has not turned this option off). When a person is created their
position is used to caculate which grid square they are currently in. The number of that
person is then added to the list stored by each grid square. When the person’s
movement takes them out of the grid square and into another, the ligts in both grid
squares are updated accordingly. When a person comes to check for collisons with
other people they smply go through the list of people in their own grid square (and any
adjoining squares, if they are close to the boundary) caculating the distance between
themselves and each other person. If this distance is too small (less than 5 units, ¥4 of
the width of a grid square), then the person atempts to move away by 1/(distance
between the people)? in a direction perpendicular to their current heading (see fig 15
and 16). If thiswill take them closer to the person, then the direction is reversed.

Figure 99: (a) B has moved too close to A... (b) ... so B moves away from A

Before the person’s posgition is updated their new postion is checked to see if it is
ingde a building. If it is indde abuilding then the new postion is rgected and the old
position is kept (this prevents people from being pushed into buildings). The use of
1/distance? results in a much smoother avoidance of other people than a linear
movement, but the value has to be capped (a two units in this program) to prevent
people getting moved too far.

Origindly the collison detection in this project did not use the grid squares to find
nearby people, before checking the distance. Instead, each person checked ther
position againg every other person in the city. This was very inefficient and significantly
increased the amount of time spent updating the people (see section 3.5 for frame time
detalls).

When people are just standing around (for example waiting for a bus, or watching a
juggler) they ill need to avoid other people (dlowing people to pass through the bus-
sop queue or reach the jugglers). This is achieved by cdling the update person
agorithm, but with aflag to prevent the person from walking closer to their god.

156 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

Frame Rates

As mentioned in the introduction to this document, getting a reasonable frame rate is of
importance to this project. The chart below gives some idea of the amount of time it
takes to draw a single frame, depending on the number of people in the city a any one
time.

These figures were generated on a 200MHz Pentium MMX, with 96Mb of RAM
and aVoodoo2 3D accderator, running Red Hat Linux 5.0. The amulation was given a
minute so that the number of people in the city could build up, then the average frame
rendering time (including processing the people) and the average people processng
time measured over the following minute.

Frame Times for Different Numbers of People

0.7

0.6 /
0.5
—&— Ave frame time

0.4 /
0.3 - - @ - - Ave Person

rocessing time
0.2 / P g
0.1 =

0 500 1000 1500

Number of People

Average Frame Time (s)

Figure 100 : Frame times for different city populations using gridcell collision

The number of people dong the bottom is taken from the average number of people
actudly in the city during the time, and not the maximum alowed number of people.
Due to the limited number of people that are generated each frame (at most one person
per doorway per frame) - as the frame rate lowers, the number of people being
generated, and the number of people being removed tends to balance out and prevent
the maximum capacity being reached. This means that when the maximum number of
people was set to 600, 1500 and 2000, the actual number of people in the city were
590, 1010 and 1080, respectively.

The graph shows a couple of important facts. Firgly the amount of time spent
processing the actions of the people is fairly smdl compared to the time spent drawing
them on screen (the distance between the two lines). This is true even with such a
ample representation for the city and its inhabitants — a more complicated city would
make the person caculations look even more favourable. Secondly the amount of time

September 1999 157

eSCAPE eSCAPE systems, infrastructures and techniques

spent rendering each frame increases linearly with the number of people in the city. If,
however, the origind collison detection is used insead of the improved verson, the
results are very different:

Frame Times for Different Numbers of People, Using
Original Collision Detection Method

1 —
/ L —— Ave frame time

" - - @-- -Ave Person
/ B processing time

0 " T T T T
0.2 Lsm_mm_ﬁm_zmo_ﬁao

Maximum Number of People

Average Frame Time (s)
o O
[o2]

Figure 101: frame times using global collision detection

Unfortunatdy it is difficult to directly compare the two graphs. The second case is much
more dependent on the maximum number of people dlowed in the city (Snce every
person checks againg every other person for collison detection), so adjusting the
vaues for the actua number of people in the city does not work. For reference, when
the maximum number of people was set to 600, 1500 and 2000, the actual numbers of
people in the city were 580, 690 and 650.

Wheat can be seen from the graph is that the people processing is now a sgnificant
pat of the rendering time, and that (until the limited number of people in the city
counteracts the effect) the frame time increases exponentialy with the number of
people.

Rejected ideas

During the course of designing the project there have been a number of ideas that were
looked at and then rgected. In this section there is a summary of some of the important
ones.

Blocks of people

One of the firg ideas that was consdered was to smulate crowds of people as
rectangular blocks, with the people moving around randomly within the blocks. The

158 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

decisons about which route to take would have been made for the block as a whole,
30 reducing the number of such decisions needed. The block as a whole coud also be
used as aamplified way of rendering the people from a distance, to increase the frame
rate in large, wdl-populated cities. Unfortunately there were severd problems with this,
such as the difficulty of trying to move around corners and the difficulty of trying to get
two such groups to pass each other. The other mgor problem is that this would lead to
unnatura ‘chunks of people moving around the city.

Flocking Algorithm

Another early ideathat was consdered was the use of aflocking agorithm to define the
movement of most of the people in the city. With this agorithm only a few people need
to be fully smulated and the rest of the people merely tend to follow the nearest

‘proper’ person. This solution was never actudly tried out, however in the find solution
most of the time people are Smply moving towards a point, with mgor updates only
occurring when they arrive a a junction or an object. With the flocking agorithm they
would need to continually work out the nearest ‘leader’, before updating their direction
of heading. It gppears that this would actudly add to the computationa overhead,

rather than reducing the problem.

Navigation Styles

At one point it was hoped that severd different styles of navigation would be
included. These would range from the perfect routing adgorithm (the one implemented in
the find program), to wandering randomly in the hope of reaching the destination. The
main problem with imperfect routing agorithms (such as dways choosing the adjacent
junction that was nearest to the destination) was how to deal with dead ends. If the
person reached a dead end, they could smply backtrack and try another route, but if
they found another dead end, they could easily backtrack and end up back at the
origina dead end. This would lead to an infinite loop and the only red solution to this
would be for each person to store their entire route so far and then try to cross-off any
routes that did not work. As the project was supposed to be about smulating the
movement of aowds, and not to be a complex maze solving dgorithm, this idea was
dropped, and the perfect Dijkstra's agorithm used instead.

Line of Sight Checking

In an early version of the program LOS checking was carried out using the built in
Maverik ‘trace lin€ function, which traces a line through a 3D space and reports the
fird (if any) object that the line hits. Apart from this possibly being over complicated for
amply spotting buildings in the way, it was dso very difficult to adapt for use with the
dmilar ‘line of trave’ agorithm, which needed to spot any roads, as well as any
buildings, in the way. Eventualy cusom made functions, based on the underlying grid
gructure of the city, were used. These works quite well for the moment, but would

September 1999 159

eSCAPE eSCAPE systems, infrastructures and techniques

cause problemsif an atempt were made to separate the smulation of the people from
the particular city representation that is currently in use.

Possible improvements

There are quite a few improvements and changes that could have been made to the
program. A lot of these changes are to do with making the program more portable and
expandable. As the program is now it has just about reached the limit of what can be
done without fairly magor re-writes, but with more time it could hopefully be made into
alibrary of functions which could be imported into other programs.

Implementation Improvements

One change that would need doing isto try to separate the ‘physicd’ representation of
the people from the control code more. For instance the LOS and LOT checking
currently relies heavily on the underlying grid structure, as does the collison detection.
This grid aso forces every building or road to completely fill one or more grid squares,
making them dl multiples of 20 units in Sze. Although the actud layout of the city is
loaded at run time, the data is Stored in an array, o its maximum sSize is pre-set in the
code (smdller cities Smply leave areas empty). It would be good to find a data structure
that could be more easily expanded to any required city Size.

One data gructure that would probably be a lot easier to change would be the
objects data structure. Although the current method of usng an array amplified the
code whilst developing various ideas — alowing easy traversal of the objects and the
ability to index a particular object without resorting to pointers — a linked list structure
would be more flexible, alowing objects to be crested and destroyed on-the-fly. This
would aso dlow the number of peoplein the city to be adjusted, based on frame rate.

Ancther idea that there was not time to implement was to alow different object
types to have functions registered with them. Instead of the current method of choosing
the rlevant reaction from a ligt of different object types whenever a person arrives a
an object, or the object is updated, each object could have a pointer to a function
which should be cdl in those events. This would have made it alot easier to expand the
program to include different types of objects, and would also make it alot more useful
as alibrary. This would hopefully result in an overal more object- orientated design for
the code.

Distractions

The program currently is not very good at handling moving didractions. It is possble to
operate them by regularly re-registering them with each of the junctions as they pass by
(the ‘register distraction’ function also ‘de-registers any distractions that cannot be
seen by a particular junction), but thisis not perfect. Asde from being afairly inefficient
agorithm, it ill means that a lot of people will miss certain objects (if they do not

160 eSCAPE Deliverable 5.1

Chapter Seven Crowd Control: populating the virtual cityscape

happen to be a ajunction when it passes by). Also if an object stops being distracting
or its digraction vaue changes, it can take a while for the change to be noticed, as
there is no way of updating the people dready on their way to the object (or those
ganding watching it). Instead of completely rewriting the distractionhandling agorithm,
it might be possible to add a secondary ‘moving digtraction’ agorithm, and keep the
firg (more efficient) one for stationary objects.

On-screen Changes

There are dso some features which could have been added, which would have had
more of an on-screen effect, rather than just being behind the scenes. One such
improvement would be to include groups of people in the city who are traveling around
together. Thiswould probably be best done using the flocking dgorithm that was earlier
rgjected, but there would also be several other issues to address. How would the
groups form? Would they be generated as a group, or would they randomly form in the
map, or maybe members would seek each other out and band together? How would
the groups split up? Would they dl go into the same doorway and disappear, or would
individua members go off on their own? The waiting of people could aso be improved.
At the moment if a person is told to stop and wait, they stop exactly where they are,
and perhaps it would look better if the person moved towards one side of the
pavement, out of the way of other people.

Another smdl problem that has not been adequately solved is the way that people
walk across roads straight in front of buses. The only possible solution found, so far, is
to put a check in the low-level ‘pogtion update’ function. As bus avoidance is a fairly
high leve function, this code did not redlly fit there and so has been left out.

September 1999 161

References and Bibliography

Black, P E, Algorithms, Data Structures, and Problems: terms and definitions, Verson
February 4th, 1999.

Booch, G., Andisisy Disefio Orientado a Objetos con Aplicaciones, Addison-Wedey,
1996

Borgwardt K H, Average complexity for determining the convex hull of randomly given
points. Discrete and Computational Geometry, 17:79--109, 1997.

Bowers, J,, Pettifer, S, Algorithms for Electronic Landscapes, in J. Bowers, S. Pettifer
and M.Stenius (eds.), Understanding Connection, Transportation and
Participation, Lancaster University Press, 47-77, 1998

Bowers, J., The Socia Logic of Cyberspace or The Interactional Affordances of
Virtud Brutdism, in A. Bullock and JMariani (eds), COMIC project
deliverable 4.3 (deliverable to ESPRIT Basic Research Action 6225),
Lancaster University, 1995

Brassard G, Bratley P, Fundamentd of Algorithms, Prentice-Hdll, Inc. A Smon &
Schuster Company, 1996.

Brooks, M.R. Virtud Redlity Interfaces for Complex Environments, Master’s Thesis,
Department of Computer Science, University of Manchester, 1994.

Catanese, A.J., Snyder, J.C., Introduction to Urban Planning, McGraw-Hill, 1979.

Ciucai, G., Dd Co, F., Manieri-Elia, M., Tafuri, M., The American City: From the
Civil War to the New Dedl, The MIT Press, Cambridge, Massachusetts, 1979.

Clark, JM., Hierarchical Geometric Modesfor Visble Surface Algorithms, Comm.
ACM, 19(10), 547-54, Oct 1976.

Cook, J., Howard, T., Hubbold, R., Keates, M., Gibson, S., Murta, A., Pettifer, S.
and West, A. MAVERIK Programmer’s Guide. Advanced Interfaces Group,
Department of Computer Science, University of Manchester, October 1998.

Cook, J., Howard, T., Hubbold, R., Keates, M., Gibson, S., Murta, A., Pettifer, S.
and West, A. MAVERIK Functiona Specification. Advanced Interfaces
Group, Department of Computer Science, University of Manchester, October
1998.

Cruz-NeiraC, Sandin D J, DeFanti T A, ‘ Surround-screen projection-based virtud
redity: The Design and Implementation of the CAVE’, Computer Graphics
Proceedings, Annua Conference Series, volume 27, August 1993, pp 135
142

Foley, J.D., van Dam, A., Feiner, SK. and Hughes, J.F., Computer Graphics-
Principles and Practice, Addison-Wed ey, Reading, Massachusetts, 1990.

August 1999 163

eSCAPE eSCAPE systems, infrastructures and techniques

Frécon E, Stenius M, "DIVE: A Scaesble network architecture for distributed virtua
environments', Digtributed Systems Engineering Journa, Val. 5, No. 3, Sept.
1998, pp. 91-100, http://mww.s cs.se/~emmanud/publications/dsg/

Frécon E., Stenius M., DIVE: A scdeable network architecture for distributed virtua
environments, Digtributed Systems Engineering Journa (DSEJ), 5 (1998), pp
91-100, Specid Issue on Digributed Virtud Environments

Fructerman, T.M.J. and Reingold, E.M., "Graph Drawing by Force-Directed
Placement”, Software -- Practice and Experience, Vol. 21(11), pp 1129 -
1164, November 1991

H Eddsorunner, “ Algorithms in Computational Geometry”, “EATCS Monographs or
Theoreticd Computer Science’, v. 10, Springer-Verlag, Heideberg, West
Germany.

Hagsand O, "Interactive MultiUser VEsin the DIVE System”, IEEE Multimedia
Magazine, Vol 3, Number 1, 1996,
http:/Amww.computer.org/multimedia/mu1996/u1030abs.htm

Hagsand O., Interactive MultiUser VEsin the DIVE System, IEEE Multimedia
Magezine, Vol 3, Number 1, 1996

Hubbold, R., Xiao, D. and Gibson, S. MAVERIK — The Manchester Virtud
Environment Interface Kernd, in M. Gobd and J. David and P. Savik and J.J.
van Wijk (ed.), Virtud Environments and Scientific Visuaization * 96, Springer-
Verlag/Wien, 11-20, 1996.

Ingram, R., "Legibility Enhancement for Information Visudisation”, PhD Thesis,
Nottingham University, 1995

Kogtof, S., The City Shaped: Urban Patterns and Meanings Through History, Thames
and Hudson, London, 1991.

Lenningdd J C, Smart Unit Navigation, 1996. Available from
http://home.sol.no/~johncl/shorpath.htm

M. Hoch, D. Schwabe, Group Interaction in a Surround Screen Environment,
Computer Animation “99, IEEE Computer Conference Series Geneva, May
26th-29th, 1999

Musse R, Thdmann D, ‘A Modd of Human Crowd Behaviour: Group Inter-
Rdationship and Callison Detection Andlyss

Pettifer S, * An operating environment for Large Scale virtud redlity application”, PhD
thes's The University of Manchester 1999.

Rubin, SM. and Whitted, T., A Three-dimensiond Representation for Fast Rendering
of Complex Scenes, Computer Graphics, 14(3), 110-6, (Proc
SIGGRAPH’ 80).

Schiffler A, Schwabe D, Knowbotic Research, The |0-dencies System, Design and
Visudisation Techniquesin Visudisation of Structure and Population within
Electronic Landscapes, eSCAPE Ddliverable 3.1, Mariani J. et d, editors,
Lancaster University 1998

164 eSCAPE Deliverable 5.1

References and Bibliography

Sheng Liang, “The Java Native Interface — Programmer’ s Guide and Specification”,
Addison-Wedey, 1999

SICS, Dive Tcl/Tk Manua Reference http:/Aww.s cs.se/dive/manual/tclref.html

Snowdon D, Benford B, Greenhdgh C, Ingram R, Brown C, Fahlén L, SteniusM, A
3D Callaborative Virtud Environment for Web Browsing, Virtua Redity
WorldWide'97, Santa Clara, CA, April 1997

Snowdon D., Fahlén L., Stenius M., WWW3D: A 3D multi-user web browser,
WebNet'96, San Francisco, California, October 1996

Stroustrup, B., The C++ Programming Language (third edition), Addison-\Wedley,
1997.

Sun Microsystems, "Jini Technology Architectural Overview™, White paper, Sun
Microsystems Inc., hitp:/mww.sun.com/jini/whitepapers/architecture.html

Sun Microsystems, "The Java3D API", White paper, Sun Microsystems Inc.

T. C. Zhao (University of Wisconan-Milwaukee, USA) and Mark Overmars (Uretch
Universty, the Netherlands), XFORMS Library, A Graphical User Interface
Toolkit for X verson 0.81, July 1996.

Thamann D, *Smulation of the Human Crowd Based on the Group Sociologicd and
Psychological Behaviours', Ecole Polytechnique Federde de Lausanne,

The Marconi Company Limited, An Introduction to Macrospeak, January 1987.

Weiss M.A., "Data Structures and Algorithm Analyssin Ada’, Benjamin/Cummings,
1993, ISBN 0-8053-9055-3

Wright, R.S., Sweet, M., Programacion en OpenGL, ANAY A — multimedia, 1997

Xiao, D., Interactive Display and Intelligent Walk-through in aVirtud Environment,
PhD’s Thes's, Department of Computer Science, University of Manchester,
1997.

Yoder L., The Digital Display Technology of the Future, INFOCOMM “97, June
1997, Los Angeles

Zahn, C.T., "Graph-theoreticd Methods for Detecting and Describing Gestalt
Clugters', |EEE Transactions on Computers, C-20, 1, January 1971, pp. 68-
86

September 1999 165

